5£®ÔÚѧ¹ýÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â·¨ºó£¬¿ÎÌÃÉÏÀÏʦÓÖд³öÁËÒ»¸öÌâÄ¿£º$\left\{\begin{array}{l}{\frac{x+y}{6}+\frac{x-y}{10}=3¢Ù}\\{\frac{x+y}{6}-\frac{x-y}{10}=-1¢Ú}\end{array}\right.$£¬Äã»á½âÕâ¸ö·½³Ì×éÂð£¿
СÃ÷¡¢Ð¡¸Õ¡¢Ð¡·¼ÕùÂÛÁËÒ»»á¶ù£¬ËûÃÇ·Ö±ðд³öÁËÒ»ÖÖ·½·¨£º
СÃ÷£º°ÑÔ­·½³Ì×éÕûÀíµÃ$\left\{\begin{array}{l}{8x+2y=90¢Û}\\{2x+8y=-30¢Ü}\end{array}\right.$
¢Ü¡Á4-¢ÛµÃ30y=-210£¬ËùÒÔy=-7
°Ñy=-7´úÈë¢ÛµÃ8x=104£¬ËùÒÔx=13£¬
¼´$\left\{\begin{array}{l}{x=13}\\{y=-7}\end{array}\right.$
С¸Õ£ºÉè$\frac{x+y}{6}$=m£¬$\frac{x-y}{10}$=n£¬Ôò$\left\{\begin{array}{l}{m+n=3¢Û}\\{m-n=-1¢Ü}\end{array}\right.$
¢Û+¢ÜµÃm=1£¬
¢Û-¢ÜµÃm=2£¬
¼´$\left\{\begin{array}{l}{\frac{x+y}{6}=1}\\{\frac{x-y}{10}=2}\end{array}\right.$£¬ËùÒÔ$\left\{\begin{array}{l}{x+y=6}\\{x-y=20}\end{array}\right.$£¬ËùÒÔ$\left\{\begin{array}{l}{x=13}\\{y=-7}\end{array}\right.$£®
С·¼£º¢Ù+¢ÚµÃ$\frac{2£¨x+y£©}{6}$=2£¬¼´x+y=6£®¢Û
¢Ù-¢ÚµÃ$\frac{2£¨x-y£©}{10}$=4£¬¼´x-y=20£®¢Ü
¢Û¢Ü×é³É·½³Ì×éµÃx=13
¢Û-¢ÜµÃy=-7£¬¼´$\left\{\begin{array}{l}{x=13}\\{y=-7}\end{array}\right.$£®
ÀÏʦ¿´¹ýºó£¬·Ç³£¸ßÐË£¬ÌرðÊÇС¸ÕµÄ·½·¨¶ÀÌØ£¬ÏñС¸ÕµÄÕâÖÖ·½·¨½Ð×ö»»Ôª·¨£¬ÄãÄÜÓû»Ôª·¨½âÏÂÁз½³Ì×éÂð£¿
$\left\{\begin{array}{l}{\frac{3x-2y}{6}+\frac{2x+3y}{7}=1}\\{\frac{3x-2y}{6}-\frac{2x+3y}{7}=5}\end{array}\right.$£®

·ÖÎö Éè$\frac{3x-2y}{6}$=m£¬$\frac{2x+3y}{7}$=n£¬·½³Ì×éÕûÀíºóÇó³ömÓënµÄÖµ£¬¼´¿ÉÈ·¶¨³öxÓëyµÄÖµ£®

½â´ð ½â£ºÉè$\frac{3x-2y}{6}$=m£¬$\frac{2x+3y}{7}$=n£¬
·½³Ì×éÕûÀíµÃ£º$\left\{\begin{array}{l}{m+n=1¢Ù}\\{m-n=5¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º2m=6£¬¼´m=3£¬
¢Ù-¢ÚµÃ£º2n=-4£¬¼´n=-2£¬
¼´$\left\{\begin{array}{l}{\frac{3x-2y}{6}=3}\\{\frac{2x+3y}{7}=-2}\end{array}\right.$£¬
ÕûÀíµÃ£º$\left\{\begin{array}{l}{3x-2y=18}\\{2x+3y=-14}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=2}\\{y=-6}\end{array}\right.$£®

µãÆÀ ´ËÌ⿼²éÁ˽â¶þÔªÒ»´Î·½³Ì×飬ÀûÓÃÁËÏûÔªµÄ˼Ï룬ÏûÔªµÄ·½·¨ÓУº´úÈëÏûÔª·¨Óë¼Ó¼õÏûÔª·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=-$\frac{3}{4}$x+3Óë×ø±êÖá½»ÓÚA£¬BÁ½µã£¬ÉèP£¬Q·Ö±ðΪAB±ß£¬OB±ßÉϵ͝µã£¬ËüÃÇͬʱ·Ö±ð´ÓµãA£¬µãOÒÔÿÃë1¸öµ¥Î»ËÙ¶ÈÏòÖÕµãBÔÈËÙÒÆ¶¯£¬µ±Ò»¸öµãµ½´ïÖÕµãʱÁíÒ»¸öµãÒ²Í£Ö¹ÒÆ¶¯£¬ÉèÒÆ¶¯Ê±¼äΪtÃ룮
£¨1£©Çëд³öµãA£¬µãBµÄ×ø±ê£»
£¨2£©ÊÔÇó¡÷OPQµÄÃæ»ýSÓëÒÆ¶¯Ê±¼ätÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬µ±tΪºÎֵʱ£¬SÓÐ×î´óÖµ£¿²¢Çó³öSµÄ×î´óÖµ£»
£¨3£©ÊÔÖ¤Ã÷ÎÞÂÛtΪºÎÖµ£¬¡÷OPQ¶¼²»»áÊǵȱßÈý½ÇÐΣ»
£¨4£©½«¡÷OPQÑØÖ±ÏßPQÕÛµþ£¬µÃµ½¡÷O¡äPQ£¬ÎÊ£º¡÷OPQºÍO¡äPQÄÜ·ñÆ´³ÉÒ»¸öÈý½ÇÐΣ¿ÈôÄÜ£¬Çó³öµãO¡äµÄ×ø±ê£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ô²ÐĽÇΪ120¡ã£¬°ë¾¶³¤Îª6cmµÄÉÈÐÎÃæ»ýÊÇ12¦Ðcm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªyÓëx2³ÉÕý±ÈÀý£¬ÇÒµ±x=3ʱ£¬y=-18£¬Ð´³öyÓëxÖ®¼äµÄº¯Êý½âÎöʽ£¬ËüÊǶþ´Îº¯ÊýÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬½«Õý·½ÐÎOABC·ÅÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÊÇÔ­µã£¬AµÄ×ø±êΪ£¨1£¬$\sqrt{3}$£©£¬ÔòµãCµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-1£¬$\sqrt{3}$£©B£®£¨-$\sqrt{3}$£¬1£©C£®£¨-2£¬1£©D£®£¨-1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®»¯¼ò£º
£¨1£©$\frac{a-b}{ab}$+$\frac{b-c}{bc}$+$\frac{c-a}{ca}$£®
£¨2£©$\frac{1}{x-3}$-$\frac{6}{{x}^{2}-9}$-$\frac{x-1}{6+2x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªOCÊÇ¡ÏAOBµÄƽ·ÖÏߣ¬µãPÔÚOCÉÏ£¬µãM£¬N·Ö±ðÔÚOA£¬OBÉÏ£¬Èç¹û½«¡ÏAOB¶ÔÕÛ£¬Ê¹OA£¬OBÖØºÏ£¬¶øµãM£¬NҲǡºÃÖØºÏ£¬ÄÇôÏÂÁнáÂÛÕýÈ·µÄÊǢ٢ڢۢܣ®
¢ÙOM=ON£»¢ÚPM=PN£»¢Û¡ÏPMO=¡ÏPNO£»¢Ü¡ÏPOM=¡ÏPON£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½âÏÂÁв»µÈʽ£¬²¢°ÑËüÃǵĽ⼯ÔÚÊýÖáÉϱíʾ³öÀ´£º
£¨1£©3£¨2x+7£©£¾23£»
£¨2£©12-4£¨3x-1£©¡Ü2£¨2x-16£©£»
£¨3£©$\frac{x+3}{5}$£¼$\frac{2x-5}{3}$-1£»
£¨4£©$\frac{2x-1}{3}$-$\frac{3x-1}{2}$¡Ý$\frac{5}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©$\frac{x+y}{x-y}$-$\frac{x-y}{x+y}$£»
£¨2£©$\frac{2x}{x+3}$-x+1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸