精英家教网 > 初中数学 > 题目详情

【题目】在探索三角形全等的条件时,老师给出了定长线段ab,且长度为b的边所对的角为n°(0n90°)小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中ABaBDBCb,发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:

(1)n45(如图2),小明测得∠ABC65°,请根据小明的测量结果,求∠ABD的大小;

(2)n≠45时,将△ABD沿AB翻折,得到△ABD′(如图3),小明和小亮发现∠D′BC的大小与角度n有关,请找出它们的关系,并说明理由;

(3)如图4,在(2)问的基础上,过点BAD′的垂线,垂足为点E,延长AE到点F,使得EF(AD+AC),连接BF,请判断△ABF的形状,并说明理由.

【答案】(1)25°;(2)∠D'BC=180°﹣2n°,证明见解析;(3)等腰三角形,证明见解析.

【解析】

(1)先根据三角形的内角和得∠C70°,由等腰三角形的性质得∠BDC70°,从而得∠CBD的度数,可得结论;(2)设∠BDC=∠Cα,根据三角形的内角和与三角形外角的性质分别表示∠ABD和∠DBC,相加可得结论;(3)作垂线BT,根据角平分线的性质得:BEBT,证明RtABERtABT(HL),得AEAT,证明BEAF的垂直平分线,可得结论.

解:(1)如图2,△ABC中,∠A45°,∠ABC65°

∴∠C180°45°65°70°

BDBC

∴∠BDC=∠C70°

∴∠DBC180°2×70°40°

∴∠ABD65°40°25°

(2)如图3,∠D'BC180°2n°,理由是:

设∠BDC=∠Cα

∴∠DBC180°

ADB中,∠BDC=∠DAB+ABD

αn°+ABD

∴∠ABDα

由翻折得:∠ABD'=∠ABDα

∴∠D'BC=∠D'BD+DBC2ABD+DBC2(αn°)+(180°2α)180°2n°

(3)ABF是等腰三角形,且BFAB,理由是:

如图4,过BBTACT

由折叠得:∠D'BC=∠DAB

BEAF

BEBT

RtABERtABT中,

RtABERtABT(HL)

AEAT

ADAD'

DTD'ETC

AT

EF

ATEFAE

BEAF,即BEAF的垂直平分线,

BFAB

∴△ABF是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ ABC 和△ADE都是等边三角形,点 B ED 的延长线上.

1)求证:△ABD≌△ACE

2)求证:AECE=BE

3)求∠BEC 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC是边长为5cm的等边三角形,点PQ分别从顶点AB同时出发,沿线段ABBC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,PQ两点停止运动.设点P的运动时间为t(秒).

1)当运动时间为t秒时,BQ的长为_____厘米,BP的长为______厘米.(用含t的式子表示)

2)当t为何值时,PBQ是直角三角形.

3)如图2,连接AQCP,相交于点M,则点PQ在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,BC边上的高AG平分∠BAC.

(1)如图1,求证:ABAC.

(2)如图2,点DE在△ABC的边BC上,ADAEBC10cmDE6cm,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是(  )

A. B. 1 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1A、B两点,并与过A点的直线y=﹣x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点My轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1A、B两点,并与过A点的直线y=﹣x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点My轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案