【题目】平面直角坐标系 中, 是坐标原点。已知A(0, ),B(1,0),C(6, ),有一抛物线恰好经过这三点.
(1)求该抛物线解析式;
(2)若抛物线交 轴的另一交点为D,那么抛物线上是否存在一点P,使得 ,若存在,求出P的坐标,若不存在,请说明理由。
【答案】
(1)解:依题可设抛物线解析式为: y=ax2+bx+c(a≠0) ,
∵抛物线经过A,B,C三点,
∴ ,
∴,
∴该抛物线解析式为: y=x23x+ .
(2)解:设直线BC解析式为:y=kx+b,
又∵B(1,0),C(6, ),
∴,
∴,
∴直线BC的函数解析式为: y=x.
①若点P在x轴上方,则 OP ∥BC,则OP的函数解析式为 y=x ,
∴,
解得 x=,
∴P1(,),P2(,) .
②若点P在x轴下方,则OP的函数解析式为 y=x ,
∴,
解得 x=,
∴ P3(,),P4(,) .
综上所述: P1(,),P2(,) , P3(,-),P4(,).
【解析】(1)依题可设抛物线解析式为: y=ax2+bx+c(a≠0) ,将A,B,C三点坐标代入抛物线解析式,得到一个三元一次方程组,解之即可求出抛物线解析式.
(2)设直线BC解析式为:y=kx+b,将B(1,0),C(6, )两点坐标代入,得到一个二元一次方程组,解之即可得到直线BC的解析式;再分两种情况讨论:①若点P在x轴上方,则 OP ∥BC,则OP的函数解析式为 y=x ,②若点P在x轴下方,则OP的函数解析式为 y=x ,分别将OP直线方程和抛物线联立解出P点坐标即可.
【考点精析】通过灵活运用确定一次函数的表达式,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列式子:
0×2+1=12……①
1×3+1=22……②
2×4+1=32……③
3×5+1=42……④
……
(1)第⑤个式子 ,第⑩个式子 ;
(2)请用含n(n为正整数)的式子表示上述的规律,并证明:
(3)求值:(1+)(1+)(1+)(1+)…(1+).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?
(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华和小峰是两名自行车爱好者,小华的骑行速度比小峰快两人准备在周长为250米的赛道上进行一场比赛若小华在小峰出发15秒之后再出发,图中、分别表示两人骑行路程与时间的关系.
小峰的速度为______米秒,他出发______米后,小华才出发;
小华为了能和小峰同时到达终点,设计了两个方案,方案一:加快骑行速度;方案二:比预定时间提前出发.
图______填“A“”或“B“代表方案一;
若采用方案二,小华必须在小峰出发多久后开始骑行?求出此时小华骑行的路程与时间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=8,BC=6,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置……以此类推,这样连续旋转2018次后,顶点A在整个旋转过程中所经过的路线之和是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某年级共有300名学生,为了解该年级学生在,两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.
收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:
项目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74
项目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75
整理、描述数据
项目的频数分布表
分组 | 划记 | 频数 |
— | 1 | |
2 | ||
2 | ||
| 8 | |
5 |
(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)
根据以上信息,回答下列问题:
(1)补全统计图、统计表;
(2)在此次测试中,成绩更好的项目是__________,理由是__________;
(3)假设该年级学生都参加此次测试,估计项目和项目成绩都是优秀的人数最多为________人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机地摸取一个小球.
(1)采用树状图法(或列表法)列出两次摸取小球出现的所有可能结果,并回答摸取两球出现的所以可能结果共有几种;
(2)求两次摸取的小球标号相同的概率;
(3)求两次摸取的小球标号的和等于4的概率;
(4)求两次摸取的小球标号的和是2的倍数或3的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF.
(1)AE与FC的位置关系如何?为什么?
(2)AD与BC的位置关系如何?为什么?
(3)BC平分∠DBE吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com