精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点从点开始沿边向点的速度移动,点从点开始沿边向点的速度移动.

1)如果分别从同时出发,那么几秒后,的面积等于

2)如果分别从同时出发,的面积能否等于

3)如果分别从同时出发,那么几秒后,的长度等于

【答案】1后,的面积等于;(2的面积不能等于.理由见解析;(3后,的长度等于.

【解析】

1)设经过x秒钟,△PBQ的面积等于4平方厘米,根据点PA点开始沿AB边向点B1cm/s的速度移动,点QB点开始沿BC边向点C2cm/s的速度移动,表示出BPBQ的长可列方程求解;

2)设经过x秒钟,△PBQ的面积等于4平方厘米,根据点PA点开始沿AB边向点B1cm/s的速度移动,点QB点开始沿BC边向点C2cm/s的速度移动,表示出BPBQ的长可列方程求解;

3)设经过x秒,点PQ之间的距离为5cm,根据勾股定理列式求解即可;

后,.

1)根据三角形的面积公式列方程,

得:.

解得:.

时,,不合题意,舍去.

所以后,的面积等于

2的面积不能等于.

理由:根据三角形的面积公式列方程,

得:

整理,得:.

因为

所以的面积不能等于.

3)根据勾股定理列方程,

得:.

解得:(不符合题意,舍去).

所以后,的长度等于

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;

(2)若将△OCD绕O旋转到如图(2)的位置,连AD、BC,取BC的中点M,请探究线段OM、AD之间的关系,并证明你的结论;

(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.

原题:如图①,点分别在正方形的边上,,连接,则,试说明理由.

1)思路梳理

因为,所以把绕点逆时针旋转90°,可使 重合.因为,所以,点共线.

根据 ,易证 ,得.请证明.

2)类比引申

如图②,四边形中,,点分别在边上,.都不是直角,则当满足等量关系时,仍然成立,请证明.

3)联想拓展

如图③,在中,,点均在边上,且.猜想应满足的等量关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示.在△ABC中,∠B=90°,AB=5cmBC=7cm.点P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动,当其中一点达到终点后,另外一点也随之停止运动.

1)如果PQ分别从AB同时出发,那么几秒后,△PBQ的面积等于4cm2

2)如果PQ分别从AB同时出发,那么几秒后,PQ的长度等于5cm

3)在(1)中,△PQB的面积能否等于7cm2?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种商品平均每天可销售30件,每件盈利500元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价10元,商场每天可多售出2件.设每件商品降价x元(x10的整数倍),据此信息,请回答:

1)商场日销量增加  件,每件商品盈利  元;(用含x的代数式表示).

2)在上述条件不变且销售正常的情况下,每件商品降价多少元时,商场日盈利可达到21000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.

(1)求y与x的函数关系式.

(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;

(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;

(2)在这条抛物线的对称轴右边的图象上有一点B,使AOB的面积等于6,求点B的坐标;

(3)对于(2)中的点B,在此抛物线上是否存在点P,使POB=90°?若存在,求出点P的坐标,并求出POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BAD=E为对角线AC上的一点(不与AC重合),将射线EB绕点E顺时针旋转角之后,所得射线与直线AD交于F点.试探究线段EBEF的数量关系.

小宇发现点E的位置,的大小都不确定,于是他从特殊情况开始进行探究.

1)如图1,当==90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EMADMENABN.由角平分线的性质可知EM=EN,进而可得,并由全等三角形的性质得到EBEF的数量关系为

2)如图2,当=60°=120°时,

①依题意补全图形;

②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明;

3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=,若旋转后所得的线段EFEB的数量关系满足(1)中的结论,请直接写出角,满足的关系:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形中,,将绕点处开始按顺时针方向旋转,交边(或)于点交边(或)于点,当旋转至处时,停止旋转.

1)特殊情形:如图2,发现当过点时,PN也恰巧过点,此时 (填“≌”或“∽”);

2)类比探究:如图3,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案