【题目】“420”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.
(1)求大、小货车原计划每辆每次各运送帐篷多少顶?
(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑 次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.
【答案】(1) 小货车每次运送800顶,大货车每次运送1000顶;(2) 2.
【解析】试题分析:(1)设小货车每次运送x顶,则大货车每次运送(x+200)顶,根据两种类型的车辆共运送16800顶帐篷为等量关系建立方程求出其解即可;
(2)根据(1)的结论表示出大小货车每次运输的数量,根据条件可以表示出大货车现在每天运输次数为(1+m)次,小货车现在每天的运输次数为(1+m)次,根据一天恰好运送了帐篷14400顶建立方程求出其解就可以了
试题解析:(1)设小货车每次运送x顶,则大货车每次运送(x+200)顶,
根据题意得:2[2(x+200)+8x]=16800,
解得:x=800.
∴大货车原计划每次运:800+200=1000顶
答:小货车每次运送800顶,大货车每次运送1000顶;
(2)由题意,得2×(1000-200m)(1+m)+8(800-300)(1+m)=14400,
解得:m1=2,m2=21(舍去).
答:m的值为2.
科目:初中数学 来源: 题型:
【题目】定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+ 称为函数y=的一个“派生函数”.现给出以下两个命题:
(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )
A. 命题(1)与命题(2)都是真命题
B. 命题(1)与命题(2)都是假命题
C. 命题(1)是假命题,命题(2)是真命题
D. 命题(1)是真命题,命题(2)是假命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com