【题目】如图,⊙I是△ABC的内切圆,切点分别是D、E、F.
(1)若∠B=50°,∠C=70°,则∠DFE的度数为 ;
(2)若∠DFE=50°,求∠A的度数.
【答案】(1)60°;(2)∠A=80°
【解析】
(1)连接DI和EI,根据三角形的内角和定理求得∠A=60°,再根据切线的性质以及四边形的内角和定理,得∠DOE=120°,再根据圆周角定理得∠DFE=60°;
(2)根据圆周角定理得∠DOE=100°,再根据切线的性质以及四边形的内角和定理,得∠A=80°.
(1) 连接ID、IE
由题可知:∠A=180°-∠B -∠C=180°-50° -70°= 60°
∵AD、AE分别切⊙I 于D、E
∴DI⊥AB,IE⊥AC
∴∠ADI=∠AEI=90°
∴∠DIE=120°
∴∠DFE=60°
(2)∵∠DFE=50°
∴∠DIE=100°
∵AD、AE分别切⊙I 于D、E
∴DI⊥AD,IE⊥AE
∴∠ADI=∠AEI=90°
∴∠A=80°
科目:初中数学 来源: 题型:
【题目】某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:
(1)图中的值是________;
(2)被查的200名生中最喜欢球运动的学生有________人;
(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是的中点,AD交BC于点E,若CE=,BE=,以下结论中:①sin∠ABC=;②AD=,③S⊙O=π;④OE∥BD.其中正确的共有( )个.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法); ②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.
(1)请写出与之间的函数表达式;
(2)当为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交AD,CD于G,F两点,则图中阴影部分的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】泗县在省级文明城市创建中,举行“小手拉大手,倡导文明新风尚”的活动中,九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是多少?请用树状图或列表法说明所有可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).
(1)求k,m的值;
(2)已知点P(a,0),过点P作平行于y轴的直线,交直线y=2x+2于点M,交函数y=(k≠)的图象于点N.
①当a=2时,求线段MN的长;
②若PM>PN,结合函数的图象,直接写出a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com