【题目】在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法); ②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
【答案】(1)①补图见解析;②;(2)
【解析】
(1)①根据要求画出图形即可;
②首先证明∠ECF=90°,设AE=CF=x,EF2=y,则EC=4x,在Rt△ECF中,利用勾股定理即可解决问题;
(2)如图2中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.根据两点之间线段最短可得DF≤FG+EG+DE,BE=FG,推出AE+BE+DE的最小值为线段DF的长;
(1)①如图△DCF即为所求;
②∵四边形ABCD是正方形,
∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,
∴AC==AB=4,
∵△ADE绕点D逆时针旋转90°得到△DCF,
∴∠DCF=∠DAE=45°,AE=CF,
∴∠ECF=∠ACD+∠DCF=90°,
设AE=CF=x,EF2=y,则EC=4x,
∴y=(4x)2+x2=2x28x+160(0<x≤4).
即y=2(x2)2+8,
∵2>0,
∴x=2时,y有最小值,最小值为8,
当x=4时,y最大值=16,
∴8≤EF2≤16.
(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.
由旋转的性质可知,△AEG是等边三角形,
∴AE=EG,
∵DF≤FG+EG+DE,BE=FG,
∴AE+BE+DE的最小值为线段DF的长.
在Rt△AFH中,∠FAH=30°,AB==AF,
∴FH=AF=,AH==,
在Rt△DFH中,DF==,
∴BE+AE+ED的最小值为.
科目:初中数学 来源: 题型:
【题目】在正方形中,是边上一点,点在射线上,将线段绕点顺时针旋转得到线段,连接,.
(1)依题意补全图1;
(2)连接,若点,,恰好在同一条直线上,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与y轴交于C(0,8),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点.
⑴求△AOC的面积;
⑵若=4,求反比例函数和一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙I是△ABC的内切圆,切点分别是D、E、F.
(1)若∠B=50°,∠C=70°,则∠DFE的度数为 ;
(2)若∠DFE=50°,求∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线经过点,tan∠CAB=3,且.
(1)求抛物线的解析式及其对称轴;
(2)点为抛物线上一点,连接,直线把四边形的面积分为两部分,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形为正方形.点的坐标为,点的坐标为,反比例函数的图象经过点,一次函数的图象经过点和点.
(1)求反比例函数与一次函数的解析式;
(2)写出的解集;
(3)点是反比例函数图象上的一点,若的面积恰好等于正方形的面积,求点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?______;(填“是”或“否”)请简述你的理由_______.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com