【题目】如图,在等腰梯形ABCD中,AD//BC,AD=2,AB=5,BC=10,点E是边BC上的一个动点(不与B,C重合),作∠AEF=∠AEB,使边EF交边CD于点F,(不与C,D重合),线段BE=______________时,△ABE与△CEF相似。
【答案】或8
【解析】
分类讨论,当∠AEB=∠FEC时,根据正切函数,可得ME的长,根据线段的和差,可得答案,当∠AEB=∠EFC时,根据等腰三角形的性质,可得BM与ME的关系,根据线段的和差,可得答案;
解:如图:过A作AM⊥BC,过D作DN⊥BC,
∵等腰梯形ABCD,AM⊥BC,DN⊥BC,AD=2,BC=10,
∴BM=CN=4,BN=6,
又AB=5,
∴,
∴DN=AM=3
△ABE与△CEF相似有两种情况,
(1)当∠AEB=∠FEC时
∵∠AEF=∠AEB
∴∠AEF=∠AEB=∠FEC=60°
由(1)知:AM=3,BM=4
∴,
∴,
(2)当∠AEB=∠EFC时,
∵∠AEF=∠AEB,
∴∠AEF=∠EFC,
∴AE∥DC,
∴∠AEB=∠C=∠B,
∴△ABE是等腰三角形,
如图,过A 作AM⊥BC,
∴BM=ME(等腰三角形三线合一性质).
∵BM=4,
∴BE=2BM=8,
综上,当△ABE∽△CEF时,BE的长为或8;
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(2,0).OC=3OB.
(1)求抛物线的解析式;
(2)若点P是线段AC下方抛物线上的动点,求三角形PAC面积的最大值.
(3)在(2)的条件下,△PAC的面积为S,其中S为整数的点P作“好点”,则存在多个“好点”,则所有“好点”的个数为
(4)在(2)的条件下,以PA为边向直线AC右上侧作正方形APHG,随着点P的运动,正方形的大小、位置也随之改变,当顶点H或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为2,以BC边上的高AB1为边作等边三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以等边三角形AB1C1边B1C1上的高AB2为边作等边三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,那么S3_____.(用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c=0无实数根;③a-b+c≥0;④的最小值为3,其中正确结论的个数是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:
①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1>y2;④﹣<a<﹣;⑤c-3a>0.
其中正确结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠C=60°,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为一边的等边三角形.
(1)如图①,当点D在线段BC上时,求证:△AEB≌△ADC;
(2)如图①,探究BE和AC的位置关系,并说明理由.
(3)如图②,当点D在BC的延长线上时,(2)中结论还成立吗?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com