精英家教网 > 初中数学 > 题目详情
6.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.

解答 解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,
∴使与图中阴影部分构成轴对称图形的概率是:3÷5=$\frac{3}{5}$.
故选C.

点评 此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为(  )
A.1cmB.2cmC.3cmD.4cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在Rt△ABC中,∠C=90°,∠A=60°,AC=$\sqrt{3}$,将△ABC绕点B旋转到△A′BC′的位置,且使A、B、C′三点在同一条直线上,则点A经过的最短路线是(  )
A.$\frac{5}{2}π$B.$\frac{{5\sqrt{3}}}{3}π$C.$\frac{{4\sqrt{3}}}{3}π$D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB,求证:$\frac{BE}{DE}$=$\frac{B{C}^{2}}{C{D}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在Rt△ABC中,∠ABC=90°,BD平分∠ABC,点D在△ABC外,∠ADC=135°,且∠ADB=∠CDE,求证:AE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知二次函数的图象M经过A(-1,0),B(4,0),C(2,-6)三点.
(1)求该二次函数的解析式;
(2)点G是线段AC上的动点(点G与线段AC的端点不重合),若△ABG与△ABC相似,求点G的坐标;
(3)设图象M的对称轴为l,点D(m,n)(-1<m<2)是图象M上一动点,当△ACD的面积为$\frac{27}{8}$时,点D关于l的对称点为E,能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是(  )
A.y=$\frac{{\sqrt{3}}}{2}{x^2}$B.y=$\sqrt{3}{x^2}$C.y=2$\sqrt{3}{x^2}$D.y=3$\sqrt{3}{x^2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数是7.5.

查看答案和解析>>

同步练习册答案