【题目】如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.
(1)求∠FDP的度数;
(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;
(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.
【答案】(1)45°;(2)BP+DP=AP,证明详见解析;(3)﹣1.
【解析】
(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°;
(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;
(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.
(1)由对称得:CD=C'D,∠CDE=∠C'DE,
在正方形ABCD中,AD=CD,∠ADC=90°,
∴AD=C'D,
∵F是AC'的中点,
∴DF⊥AC',∠ADF=∠C'DF,
∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°;
(2)结论:BP+DP=AP,
理由是:如图,作AP'⊥AP交PD的延长线于P',
∴∠PAP'=90°,
在正方形ABCD中,DA=BA,∠BAD=90°,
∴∠DAP'=∠BAP,
由(1)可知:∠FDP=45°
∵∠DFP=90°
∴∠APD=45°,
∴∠P'=45°,
∴AP=AP',
在△BAP和△DAP'中,
∵,
∴△BAP≌△DAP'(SAS),
∴BP=DP',
∴DP+BP=PP'=AP;
(3)如图,过C'作C'G⊥AC于G,则S△AC'C=ACC'G,
Rt△ABC中,AB=BC=,
∴AC=,即AC为定值,
当C'G最大值,△AC'C的面积最大,
连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,
∵CD=C'D=,OD=AC=1,
∴C'G=﹣1,
∴S△AC'C=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:
loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:logaM=m,logaN=n,则M=am,N=an
∴MN=aman=am+n,由对数的定义得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解决以下问题:
(1)将指数式53=125转化为对数式 ;
(2)log24= ,log381= ,log464= .(直接写出结果)
(3)证明:证明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0).(写出证明过程)
(4)拓展运用:计算计算log34+log312﹣log316= .(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面处测得楼房顶部的仰角为,沿坡面向下走到坡脚处,然后向楼房方向继续行走10米到达处,测得楼房顶部的仰角为.已知坡面米,山坡的坡度(坡度是指坡面的铅直高度与水平宽度的比),求楼房高度.(结果精确到0.1米)(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.
(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△EBF为等腰直角三角形,点B为直角顶点, 四边形ABCD是正方形.
⑴ 求证:△ABE≌△CBF;
⑵ CF与AE有什么特殊的位置关系?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】思维探索:
在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.
(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是 ;
(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;
拓展提升:
如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )
A.3B.5C.4.2D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com