【题目】如图,,,…都是等腰直角三角形,直角顶点,,…都在函数的图象上,若三角形依次排列下去,则的坐标是________.
【答案】
【解析】
由于△OP1A1是等腰直角三角形,可知直线OP1的解析式为y=x,将它与y=联立,求出方程组的解,得到点P1的坐标,则A1的横坐标是P1的横坐标的两倍,从而确定点A1的坐标;由于△P1OA1,△P2A1A2都是等腰直角三角形,则A1P2∥OP1,直线A1P2可看作是直线OP1向右平移OA1个单位长度得到的,因而得到直线A1P2的解析式,同样,将它与y=联立,求出方程组的解,得到点P2的坐标,则P2的横坐标是线段A1A2的中点,从而确定点A2的坐标;依此类推,从而确定点A2009的坐标.
过P1作P1B1⊥x轴于B1,
易知B1(2,0)
0)是OA1的中点,
∴A1(4,0).
可得P1的坐标为(2,2),
∴P1O的解析式为:y=x,
∵P1O∥A1P2,
∴A1P2的表达式与P1O的解析式一次项系数相等,
将A1(4,0)代入y=x+b,
∴b=4,
∴A1P2的表达式是y=x4,
与y=(x>0)联立,解得P2(2+2,2+2),
仿上,A2(4,0).
P3(2+2,2+2 ),A3(4,0).
依此类推,点A2009的坐标是(4,0).
故答案为:(4,0).
科目:初中数学 来源: 题型:
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果以13元/千克的价格销售,那么每天可售出240千克.
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系,每天销售200千克以上.
(1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式;
(2)该超市销售这种水果每天获取的利润达到1040元,那么销售单价为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,是一次函数的图象和反比例函数的图象的两个交点.
求直线与轴的交点的坐标及的面积;
在轴上是否存在一点,使得的值最大?若存在,直接写出点的坐标;若不存在,请说明理由;
当点在双曲线上运动时,作以、为邻边的平行四边形,求平行四边形周长最小时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明同学设计的“已知底边及底边上的中线作等腰三角形”的尺规作图过程.
已知:如图 1,线段 a 和线段 b.
求作:△ABC,使得 AB = AC,BC = a,BC 边上的中线为 b.
作法:如图 ,
① 作射线 BM,并在射线 BM 上截取 BC = a;
② 作线段 BC 的垂直平分线 PQ,PQ 交 BC 于 D;
③ 以 D 为圆心,b 为半径作弧,交 PQ 于 A;
④ 连接 AB 和 AC.
则△ABC 为所求作的图形.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图 2 中的图形;
(2)完成下面的证明:
证明:由作图可知 BC = a,AD = b.
∵ PQ 为线段 BC 的垂直平分线,点 A 在 PQ 上,
∴ AB = AC( )(填依据).
又∵线段 BC 的垂直平分线 PQ 交 BC 于 D,
∴ BD=CD.( )(填依据).
∴ AD 为 BC 边上的中线,且 AD = b.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m),在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A(-3,1),B(-3,-3),第三个景点C(3,2)的位置已破损.
(1)请在图中标出景点C的位置;
(2)小明想从景点B开始游玩,途经景点A,最后到达景点C,求小明一家最短的行走路程(参考数据:≈6,结果保留整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某电信公司提供了,两种方案的移动通讯费用(元)与通话时间(分)之间的关系,则以下说法正确的是( )
①若通话时间少于120分,则方案比方案便宜
②若通话时间超过200分,则方案比方案便宜
③通讯费用为60元,则方案比方案的通话时间多
④当通话时间是170分钟/时,两种方案通讯费用相等
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com