精英家教网 > 初中数学 > 题目详情

【题目】如图所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图的方式拼成一个正方形.

(1)按要求填空:

你认为图中的阴影部分的正方形的边长等于   

请用两种不同的方法表示图中阴影部分的面积:

方法1:   

方法2:   

观察图,请写出代数式(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系:   

(2)根据(1)题中的等量关系,解决如下问题:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.

(3)实际上有许多代数恒等式可以用图形的面积来表示,如图,它表示了   

【答案】(1)①m﹣n;②(m﹣n)2(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(2)(m﹣n)2=20;(3)(2m+n)(m+n)=2m2+3mn+n2

【解析】

(1)①观察可得阴影部分的正方形边长是m-n;

②方法1:阴影部分的面积就等于边长为m-n的小正方形的面积;方法2:边长为m+n的大正方形的面积减去4个长为m,宽为n的长方形面积;

③根据以上相同图形的面积相等可得;

(2)根据|m+n-6|+|mn-4|=0可得m+n=6、mn=4,利用(1)中结论(m-n)2=(m+n)2-4mn计算可得;

(3)根据:大长方形面积等于长乘以宽或两个边长分别为m、n的正方形加上3个长为m、宽为n的小长方形面积和列式可得.

(1)①阴影部分的正方形边长是m﹣n.

方法1:阴影部分的面积就等于边长为m﹣n的小正方形的面积,

即(m﹣n)2

方法2:边长为m+n的大正方形的面积减去4个长为m,宽为n的长方形面积,即(m+n)2﹣4mn;

③(m﹣n)2=(m+n)2﹣4mn.

(2))∵|m+n﹣6|+|mn﹣4|=0,

∴m+n﹣6=0,mn﹣4=0,

∴m+n=6,mn=4

由(1)可得(m﹣n)2=(m+n)2﹣4mn

∴(m﹣n)2=(m+n)2﹣4mn=62﹣4×4=20,

∴(m﹣n)2=20;

(3)根据大长方形面积等于长乘以宽有:(2m+n)(m+n),

或两个边长分别为m、n的正方形加上3个长为m、宽为n的小长方形面积和有:2m2+3mn+n2

故可得:(2m+n)(m+n)=2m2+3mn+n2

故答案为:(1)m﹣n;(2)①(m﹣n)2,②(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(3)(2m+n)(m+n)=2m2+3mn+n2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】据《2012年衢州市国民经济和社会发展统计公报》(2013年2月5日发布),衢州市固定资产投资的相关数据统计图如下:
根据以上信息,解答下列问题:
(1)求2012年的固定资产投资增长速度(年增长速度即年增长率);
(2)求2005﹣2012年固定资产投资增长速度这组数据的中位数;
(3)求2006年的固定资产投资金额,并补全条形图;
(4)如果按照2012年的增长速度,请预测2013年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则 =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图。
(1)问题 如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:
(2)探究 如图,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用 请利用(1)(2)获得的经验解决问题
如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPD=∠A.设点P的运动时间为t(秒),当以D为圆心,DC为半径的圆与AB相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为6的等边三角形,PAC边上一动点,由AC运动(与A、C不重合),QCB延长线上一动点,与点P同时以相同的速度由BCB延长线方向运动(Q不与B重合),过PPE⊥ABE,连接PQABD.

(1)AE=1时,求AP的长;

(2)∠BQD=30°时,求AP的长;

(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形纸片ABCD对折后再展开,得到折痕EF,MBC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′、BB′.

判断△AB′B的形状为   

P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

在学习可化为一元一次方程的分式方程及其解法的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.

经过独立思考与分析后,小杰和小哲开始交流解题思路如下:

小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.

小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.

(1)请回答:   的说法是正确的,并简述正确的理由是   

(2)参考对上述问题的讨论,解决下面的问题:

若关于x的方程的解为非负数,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠CAB=∠B=30°,AB=2 ,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为(
A.
B.
C.3﹣
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是第一象限内横坐标为2 的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是

查看答案和解析>>

同步练习册答案