精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是正方形
(2)判断直线EG是否经过一个定点,并说明理由
(3)求四边形EFGH面积的最小值.

【答案】
(1)

证明:∵四边形ABCD是正方形,

∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,

∵AE=BF=CG=DH,

∴AH=BE=CF=DG,

在△AEH、△BFE、△CGF和△DHG中,

∴△AEH≌△BFE≌△CGF≌△DHG(SAS),

∴EH=FE=GF=GH,∠AEH=∠BFE,

∴四边形EFGH是菱形,

∵∠BEF+∠BFE=90°,

∴∠BEF+∠AEH=90°,

∴∠HEF=90°,

∴四边形EFGH是正方形


(2)

解:直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:

连接AC、EG,交点为O;如图所示:

∵四边形ABCD是正方形,

∴AB∥CD,

∴∠OAE=∠OCG,

在△AOE和△COG中,

∠OAE=∠OCG

∠AOE=∠COG

AE=CG

∴△AOE≌△COG(AAS),

∴OA=OC,即O为AC的中点,

∵正方形的对角线互相平分,

∴O为对角线AC、BD的交点,即O为正方形的中心


(3)

解:设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,

根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2

∴S=x2+(8﹣x)2=2(x﹣4)2+32,

∵2>0,

∴S有最小值,

当x=4时,S的最小值=32,

∴四边形EFGH面积的最小值为32cm2


【解析】(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心;
(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=(
A.
B.
C.
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C

(1)求m,n的值
(2)若点D与点C关于x轴对称,求ABD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的顶点A的坐标为(2,0),∠COA=60°,将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF.

(1)直接写出点F的坐标:
(2)求线段OB的长及图中阴影部分的面积:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解不等式:
(2)计算:÷(a+2﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:

(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;
(2)在图②中,以格点为顶点,AB为一边画一个正方形;
(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).

(1)当m=﹣1,n=4时,k= ,b= ;
当m=﹣2,n=3时,k= ,b= ;
(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;
(3)利用(2)中的结论,解答下列问题:
如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.
①当m=﹣3,n>3时,求 的值(用含n的代数式表示);
②当四边形AOED为菱形时,m与n满足的关系式为_____ ;
当四边形AOED为正方形时,m= , n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax(a≠0)与y=在同一坐标系中的大致图象是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).

(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.
(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?

查看答案和解析>>

同步练习册答案