分析 由已知条件得到∠B=∠D=90°,推出△ABC≌△CDE,根据全等三角形的性质得到∠A=∠DCE,由余角的性质得到∠ACE=90°,于是得到结论.
解答 证明:∵AB⊥BD,垂足为B,ED⊥BD,垂足为D,
∴∠B=∠D=90°,
在△ABC于△CDE中,$\left\{\begin{array}{l}{AB=CD}\\{∠B=∠D}\\{BC=DE}\end{array}\right.$,
∴△ABC≌△CDE,
∴∠A=∠DCE,
∵∠A+∠ACB=90°,
∴∠ACB+∠DCE=90°,
∴∠ACE=90°,
∴AC⊥CE.
点评 本题考查了全等三角形的判定和性质,余角的性质,熟练掌握全等三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com