精英家教网 > 初中数学 > 题目详情

【题目】(2013年四川泸州8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m

(1)求点B到AD的距离;

(2)求塔高CD(结果用根号表示).

【答案】解:(1)过点B作BEAD于点E,

AB=40mA=30°,

BE=AB=20m

即点B到AD的距离为20m

(2)在RtABE中,

∵∠A=30°,∴∠ABE=60°

∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°DE=EB=20m

m,AD=AE+EB=20+20=20(+1)

在RtADC中,A=30°,

DC=AD=10+10

答:塔高CD为(10+10)m

解析(1)过点B作BEAD于点E,然后根据AB=40mA=30°,可求得点B到AD的距离

(2)先求出EBD的度数,然后求出AD的长度,然后根据A=30°即可求出CD的高度

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;

(2)已知,C为抛物线与y轴的交点。

若点P在抛物线上,且,求点P的坐标;

设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,直角梯形OABC的边OCOA分别在x轴、y轴上,ABOC,∠AOC=90°,∠BCO=45°BC=12,点C的坐标为(-180)

1)求点B的坐标;

2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,∠OFE=45°,求直线DE的解析式;

3)求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:噢,我知道路灯有多高了!同学们,请你和小明一起解答这个问题:

(1)在图中作出路灯O的位置,并作OP⊥lP.

(2)求出路灯O的高度,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四组线段中,可以组成直角三角形的是(  )

A. 4,5,6 B. 3,4,5 C. 5,6,7 D. 1,,3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.

(1)b=  

(2)求证:四边形BCDE是平行四边形;

(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1y=x+6y轴交于点B,直线l2y=kx+6x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,经过A(-26)的直线交x轴正半轴于点B,交y轴于点COB=OC,直线ADx轴负半轴于点D,若ABD的面积为27

1)求直线AD的解析式;

2)横坐标为m的点PAB上(不与点AB重合),过点Px轴的平行线交AD于点E,设PE的长为yy≠0),求ym之间的函数关系式并直接写出相应的m的取值范围;

3)在(2)的条件下,在x轴上是否存在点F,使PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为/千克和/千克(都为正数,且),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.

1)用含的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?

2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.

查看答案和解析>>

同步练习册答案