精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠ABC=90°AB=6cmAD=24cmBCCD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,ACD是以DC为斜边的直角三角形.

【答案】8cm

【解析】试题分析: 先根据BCCD的长度之和为34cm,可设BC=xCD=(34-x),根据勾股定理可得:AC2=AB2+BC2=62+x2,△ACD是以DC为斜边的直角三角形,AD=24cm,根据勾股定理可得:AC2=CD2AD2=(34-x2-242,∴62+x2=(34-x2-242,解方程即可求解.

试题解析:∵BCCD的长度之和为34cm,

∴设BC=xcm,则CD=34﹣xcm

∵在ABC中,∠ABC=90°,AB=6cm,

AC2=AB2+BC2=62+x2.

∵△ACD是以DC为斜边的直角三角形,AD=24cm,

AC2=CD2AD2=34﹣x2﹣242,

62+x2=34﹣x2﹣242,

解得x=8,

BC=8cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】万达旅行社为吸引市民组团去黄山风景区旅游,推出了如下的收费标准:

宿州高铁新区组织员工去黄山风景区旅游,共支付给万达旅行社旅游费用27 000元,请问该单位这次共有多少员工去黄山风景区旅游?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中, 是边长为的等边三角形,直线轴、分别交于点 ,过点,交于点

)点的坐标为__________.(结果保留根号)

)求证:点关于轴对称.

)若,求直线对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列证明过程填空:

已知:如 图,ADBC于点DEFBC于点F,交AB于点G,交CA的延长线于点E1=2

求证:AD平分∠BAC,填写证明中的空白.

证明:

ADBCEFBC (已知),

EFAD     ),

   =   两直线平行,内错角相等 ),

   =CAD     ).

    (已知),

   ,即AD平分∠BAC    ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应我市“中国梦”“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.

请你根据以上图表提供的信息,解答下列问题:

(1)a=   ,b=   ,n=   

(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015桂林)全民阅读深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).

1)求每本文学名著和动漫书各多少元?

2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.

查看答案和解析>>

同步练习册答案