精英家教网 > 初中数学 > 题目详情

【题目】请阅读下列材料:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求BPC度数的大小和等边三角形ABC的边长.

小刚同学的思路是:将BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得P′PC是等边三角形,而PP′A又是直角三角形(由勾股定理的逆定理可证),所以APB=150°,而∠BPC=∠AP′B=150°,进而求出等边ABC的边长为,问题得到解决.

请你参考小刚同学的思路,探究并解决下列问题:

如图3,在正方形ABCD内有一点P,且PA=,BP=2,PC=.求BPC度数的大小和正方形ABCD的边长.

【答案】BPC=135°,正方形边长为

【解析】

首先根据旋转的性质得出△BPC≌△BP′A,利用AP′=PC=,BP=BP′=2得出AP′P是直角三角形,再利用过点B作BEAP′交AP′的延长线于点E,利用勾股定理得出AB的长.

解:如图,将△BPC绕点B逆时针旋转90°,得△BP′A,

△BPC≌△BP′A.

∴AP′=PC=,BP=BP′=2.

连结P P′,

Rt△BP′P中,

∵BP=BP′=2,∠PBP′=90°,

∴P P′=2,∠BP′P=45°.

△AP′P中,AP′=,P P′=2,AP=

∵(2+(22=(2,即AP′2+PP′2=AP2

∴△AP′P是直角三角形,即∠A P′P=90°.

∴∠AP′B=135°.

∴∠BPC=∠AP′B=135°.

如图,过点BBE⊥AP′AP′的延长线于点E.

∴∠EP′B=45°.

∴EP′=BE=

∴AE=2

Rt△ABE中,由勾股定理,得AB=

∴∠BPC=135°,正方形边长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,菱形ABCD位于平面直角坐标系中,抛物线yax2+bx+c经过菱形的三个顶点ABC,已知A(﹣30)、B0,﹣4).

1)求抛物线解析式;

2)线段BD上有一动点E,过点Ey轴的平行线,交BC于点F,若SBOD4SEBF,求点E的坐标;

3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1k2的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,并解决问题:

1)如图①等边△ABC内有一点P,若点P到顶点ABC的距离分别为345,求∠APB的度数.

为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP处,此时△ACP≌△ABP,这样就可以利用旋转变换,将三条线段PAPBPC转化到一个三角形中,从而求出∠APB__________

2)基本运用

请你利用第(1)题的解答思想方法,解答下面问题:

已知如图②,△ABC中,∠CAB90°ABACEFBC上的点且∠EAF45°,求证:EF2BE2+FC2

3)能力提升

如图③,在RtABC中,∠C90°AC1,∠ABC30°,点ORtABC内一点,连接AOBOCO,且∠AOC=∠COB=∠BOA120°,求OA+OB+OC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节又称为端阳节、重午节、龙舟节、正阳节、洛兰节等,是中国四大传统节日之一,端午习俗众多,其中吃粽子是端午节的习俗主题之一,某超市5月以50/盒的进价购进一款粽子1000盒,以100/盒的售价全部销售完.销售人员根据市场调研预测,该款粽子每盒的售价在5月售价基础上每降价5元,月销量就会相应增加100盒,该超市6月计划购进该款粽子不超过1400.

1)根据该超市6月计划,该款粽子6月的售价最少每盒可以定价多少元?

2)实际上,6月该超市购进该款粽子的进价比5月便宜了元,而实际售价在5月基础上降了m元,已知6月的销售利润比5月增加8%,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx3x轴交于A10)、B两点,与y轴交于点C,抛物线的对称轴为直线x2,交抛物线于点D,交x轴于点E

1)请直接写出:抛物线的函数解析式及点B、点D的坐标;

2)抛物线对称轴上的一动点P从点D出发,以每秒1个单位的速度向上运动,连接OPBP,设运动时间为t秒(t0).在点P的运动过程中,请求出:当t为何值时,∠OPB90°

3)如图2,点Q在抛物线上运动(点Q不与点AB重合),当QBC的面积与ABC的面积相等时,请求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC△ADE中,点EBC边上,∠BAC∠DAE∠B∠DABAD

1)试说明△ABC≌△ADE

2)如果∠AEC75°,将△ADE绕点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一坐标系中,二次函数与一次函数的图像可能是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数()的图象如图所示,下列结论:①;②;③为任意实数,则;④;⑤,其中正确的有( )

A.①②③B.②④C.②⑤D.②③⑤

查看答案和解析>>

同步练习册答案