【题目】在中,,是边上的高.
问题发现:
(1)如图1,若,点是线段上一个动点(点不与点,重合)连接,将线段绕点逆时针旋转,得到线段,连接,我们会发现、、之间的数量关系是,请你证明这个结论;
提出猜想:
(2)如图2,若,点是线段上一个动点(点不与点,重合)连接,将线段绕点逆时针旋转,得到线段,连接,猜想线段、、之间的数量关系是_______;
拓广探索:
(3)若,(为常数),点是线段上一个动点(点不与点,重合),连接,将线段绕点逆时针旋转,得到线段,连接.请你利用上述条件,根据前面的解答过程得出类似的猜想,并在图3中画出图形,标明字母,不必解答.
【答案】(1)详见解析;(2);(3)详见解析.
【解析】
(1)依据等角的余角相等得到∠ACE=∠BCF,进而由旋转的性质可得CE=CF,至此结合SAS易证得△ACE≌△BCF,则有AE=BF,利用BE+AE=AB可得到BE+BF=AB;
(2)由于△ABC是等腰直角三角形,根据直角三角形斜边上中线的性质得到CD=12AB,由此再进行等量代换即可得到CD、BF、BE之间的数量关系;
(3)结合题意可知△ABC为等边三角形,则有CD=3AB,至此再结合BE+BF=AB即可解答本题,同理可求解.
解:(1)在中,,,,
∴,
由旋转知,,,
∵,
∴,
∴,
即:
∵,
∴,∴,
∵,
∴;
(2)在中,,,
∴,
在中,,,
∴
由旋转知,,,
∵,
∴,
∴,
即:,
∵,
∴,
∴,
∵,
∴;
(3)如图3,
由旋转知,,,
∵,
∴,
∴,
即:,
∵,
∴,
∴,
∵,,
∴.
科目:初中数学 来源: 题型:
【题目】如图所示,双曲线y=(x>0,k>0)与直线y=ax+b(a≠0,b为常数)交于A(2,4),B(m,2)两点.
(1)求m的值;
(2)若C点坐标为(n,0),当AC+BC的值最小时,求出n的值;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记
载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)
阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=______寸,CD=____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为( )
A. B. 10 C. D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了了解初一学生防溺水知识掌握情况,随机抽取部分初一学生进行了相关知识测试,测试分为A、B、C、D四个等级进行统计,将统计结果绘制了如下两幅不完整的统计图:
请解答下列问题:
(1)该校参加本次防溺水知识测试共有______人;
(2)补全条形统计图;
(3)若该校初一年级共有学生1000人,试估计该校学生中对防溺水知识的掌握能达到A级的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是( )
A.18m2B.m2C.m2D.m2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(,是常数)中,自变量与函数的对应值如下表:
-1 | 0 | 1 | 2 | 3 | |||||
1 | 2 | 1 | -2 |
(1)判断二次函数图象的开口方向,并写出它的顶点坐标;
(2)一元二次方程(,是常数)的两个根,的取值范围是下列选项中的哪一个 .
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com