【题目】[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.
[问题情境]
已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
[综合运用]
(1)运动开始前,A、B两点的距离为 ;线段AB的中点M所表示的数 .
(2)点A运动t秒后所在位置的点表示的数为 ;点B运动t秒后所在位置的点表示的数为 ;(用含t的代数式表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?
(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合)
【答案】(1)18,-1;(2)﹣10+3t,8﹣2t;(3)A、B两点经过秒会相遇,相遇点所表示的数是;(4)经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.理由见解析
【解析】试题分析:(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;
(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;
(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;
(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.
解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示的数为=﹣1;
(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;
(3)设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,
解得x=,
﹣10+3x=.
答:A、B两点经过秒会相遇,相遇点所表示的数是;
(4)由题意得,=0,
解得t=2,
答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.
故答案为18,﹣1;﹣10+3t,8﹣2t.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.
(1)求证:四边形CODP是菱形;
(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学拓展课上,老师让同学们探讨特殊四边形的做法:
如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;
(1)你认为该作法正确吗?请说明理由.
(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
(2) 请画出△ABC关于原点对称的△ABC;
(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品.现有甲、乙两家商店出售两种同样的笔记本和钢笔.他们的定价相同:笔记本定价为每本25元,钢笔每支定价6元,但是他们的优惠方案不同,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠.已知七年级需笔记本20本,钢笔x支(大于20支).问:
(1)在甲店购买需付款 元,在乙店购买需付款 元;
(2)若x=30,通过计算说明此时到哪家商店购买较为合算?
(3)当x=40时,请设计一种方案,使购买最省钱?算出此时需要付款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,在正方形ABCD中,M是AB的中点,E是AB的延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.
(1)求证:MD=MN;
(2)若将上述条件中“M是AB的中点”改成“M是AB上任意一点”,其余条件不变,如图②所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=OC;
当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了进一步了解八年级学生的身体素质情况,由体育老师随机抽取了八年级 名学生进行一分钟跳绳测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:
请结合图表完成下列问题:
(1)表中的 , ;
(2)请把频数分布直方图补充完整;
(3)若八年级学生一分钟跳绳的成绩标准是: 为不合格; 为合格;为良好;为优秀.如果该年级有名学生,根据以上信息,请你估计该年级跳绳不合格的人数为 ;优秀的人数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com