【题目】如图1,在平面直角坐标系中,,将线段平移得到线段,点的坐标为,连结.
(1)点的坐标为__________________(用含的式子表示);
(2)若的面积为4,求点的坐标;
(3)如图2,在(2)的条件下,延长交轴于点,延长交轴于,是轴上一动点,的值记为,在点运动的过程中,的值是否发生变化,若不变,请求出的值,并写出此时的取值范围,若变化,说明理由.
【答案】(1);(2)D(4,3);(3)当时,,变化;当时,,不变;当时,,变化.
【解析】
(1)各对应点之间的关系是横坐标加m,纵坐标减1,即可得到结论;(2)(2)如图1中,作DH⊥OC于H.根据S△ADC=S梯形ADHO-S△AOC-S△DCH,计算即可.
(3)分三种情形:①如图2-1中,当t<-时.②如图2-2中,当-≤t≤2时.③如图2-3中,当t>2时,分别求解即可.
解:
(1)由平移到,可得平移后各对应点之间的关系是横坐标加m,纵坐标减1,所以平移后坐标为;
(2)如图1中,作DH⊥OC于H.
∵S△ADC=S梯形ADHO-S△AOC-S△DCH,
∴(1+3)(m+2)-×1×m-×2×3=4,
解得m=2,
∴D(4,3).
(3)①如图2-1中,当t<-时,S=2-3t,变化.
理由:由题意P(t,0),E(0,-3),C(2,0),F(-,0),B(2,4).A(0,1).
S=S△PAB+S△PEC=S△PBF-S△PAF+S△PCE=(--t)(4-1)+(2-t)3=2-3t.
②如图2-2中,当-≤t≤2时,s=4不变.
理由:S=S△PAB+S△PEC=S△PBF-S△PAF+S△PCE=(t+)(4-1)+(2-t)3=4.
③如图2-3中,当t>2时,S=3t-2变化.
理由:S=S△PAB+S△PEC=S△PBF-S△PAF+S△PCE=(t+)(4-1)+(t-2)3=3t-2.
科目:初中数学 来源: 题型:
【题目】如图,已知点A,B,C,D均在⊙O上,CD为∠ACE的角平分线.
(1)求证:△ABD为等腰三角形;
(2)若∠DCE=45°,BD=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为
A. B. 5C. 3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-EA2=AC2,
(1)求证:∠A=90°.
(2)若DE=3,BD=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在等边△ABC中, AB=, D,E分别是AB,BC的中点(如图).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.点P到BC所在直线的距离的最大值为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合。将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,射线EF与线段AB相交于点G,与射线CA相交于点Q.
(1)求证:△BPE∽△CEQ;
(2)求证:DP平分∠BPQ;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com