精英家教网 > 初中数学 > 题目详情

【题目】综合与探究:

1)计算判断:(计算并判断大小,填写符号:“>”“<”“=”

①当时,_____

②当时,_____

③当时,______

④当时,______

⑤当时,______

⑥当时,_______

2)归纳猜想:猜想并写出关于是常数,且)之间的数量关系;

3)探究证明:请补全以下证明过程:

证明:根据一个实数的平方是非负数,可得

4)实践应用:要制作面积为的长方形(或正方形)框架,直接利用探究得出的结论,求出框架周长的最小值.

【答案】1)①=,②=,③=,④>,⑤>,⑥>;(2;(3)见解析;(4)框架周长的最小值为

【解析】

1)代入计算即可;

2)由(1)可得出

3)根据非负数的性质展开即可得出答案;

4)设长方形的长和宽分别为,则长方形面积为:;周长为:,根据(2)的结论即可得出答案.

解:(1)①当时,

②当时,

③当时,

④当时,

⑤当时,

⑥当时,

2)猜想结果为:

3)证明过程如下:

根据一个实数的平方是非负数,可得

4)设长方形的长和宽分别为

∵长方形面积为4

∴框架周长的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况下,可通过证明等底等高来说明它们的面积相等,已知是等腰直角三角形,,连接

1)如图1,当时,求证

2)如图2,当时,上述结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.

3)如图3,在(2)的基础上,如果点为的中点,连接,延长,试猜想的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽_____m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�