【题目】(动手操作)
如图①,把长为l、宽为h的矩形卷成以AB为高的圆柱形,则点A′与点______重合,点B′与点______重合;
(探究发现)
如图②,圆柱的底面周长是80,高是60,若在圆柱体的侧面绕一圈丝线作装饰,从下底面A出发,沿圆柱侧面绕一周到上底面B,则这条丝线最短的长度是______;
(实践应用)
如图③,圆锥的母线长为12,底面半径为4,若在圆锥体的侧面绕一圈彩带做装饰,从圆锥的底面上的点A出发,沿圆锥侧面绕一周回到点A.求这条彩带最短的长度是多少?
(拓展联想)
如图④,一颗古树上下粗细相差不大,可以看成圆柱体.测得树干的周长为3米,高为18米,有一根紫藤自树底部均匀的盘绕在树干上,恰好绕8周到达树干的顶部,这条紫藤至少有 米
【答案】【动手操作】:A,B;【探究发现】100 ;【实践应用】:;【拓展联想】30
【解析】
[动手操作]根据圆柱的侧面展开图是矩形即可得到答案;
[探究发现] 连接,根据矩形的性质及勾股定理求出即可得到答案;
[实践应用]将圆锥展开得到展开图,连接,根据弧长公式求出∠的度数,过点O作OD⊥于点D,根据等腰三角形的性质及直角三角形的性质求出OD=6,再利用勾股定理求出AD即可得到答案;
[拓展联想]将树干的高度分成相等的8段,利用树干的周长建立勾股定理的等式求出一圈紫藤的长,由此得到答案.
[动手操作]点与点A重合,点与点B重合,
故答案为:A,B;
[探究发现]由题意知该圆柱的侧面展开图即是矩形,则=80,=60,
连接,
∵∠=90°,
∴,
∴这条丝线最短的长度是100,
故答案为:100;
[实践应用]
解:圆锥的侧面展开图,如图所示:
连接,
则为最短路径.
弧的长为:,
由弧长公式得∠的度数为:
过点O作OD⊥于点D,
∴∠AOD=60°,
∴∠OAD=30°,
∴OD=6,
在Rt△AOD中,
∴这条彩带最短的长度是;
[拓展联想]∵树干的高是18米,缠绕8圈紫藤,
∴每相邻两圈紫藤的距离是米,
∵树干的周长是3米,
∴一圈紫藤的长度是米,
∴8圈紫藤的长度最少是米,
故答案为:30.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
(1)求证:四边形ABEF是平行四边形;
(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为的抛物线与轴交于,两点,且.
(1)求点的坐标;
(2)求二次函数的解析式;
(3)作直线,问抛物线上是否存在点,使得.若存在,求出点的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A是以BC为直径的⊙O上一点,I是△ABC的内心,AI的延长线交⊙O于点D,过点D作BC的平行线交AB、AC的延长线于E、F.下列说法:①△DBC是等腰直角三角形;②EF与⊙O相切;③EF=2BC;④点B、I、C在以点D 为圆心的同一个圆上.其中一定正确的是_______(把你认为正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)方法选择:如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.
小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…
小军认为可用补短法证明:延长CD至点N,使得DN=AD…
请你选择一种方法证明.
(2)类比探究:(探究1)如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.
(探究2)如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是 .
(3)拓展猜想:如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有两个不相等的实数根
(1)求实数m的取值范围;
(2)若两个实数根的平方和等于15,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com