【题目】如图,矩形中,为上一动点(与不重合),将沿翻折至,与相交于点,与相交于点,连接交于,若,则的长=______,折痕的长_____.
【答案】5
【解析】
根据折叠及矩形的性质得到∠B1QF =∠CB1B,即可得到QF= B1F=5,如图,过点Q作QH⊥PB1于点H,得到△EHQ∽△EB1F,利用相似比得到EH,QH,从而得到B1H及B1Q,计算出cos∠HB1Q=,根据等量代换得到∠PB1B=∠PBB1=∠PCB,利用cos∠PCB = cos∠HB1Q=即可计算得出PC的值.
解:由折叠可知,PC 垂直平分BB1,
∴BC=B1C,BP=B1P,
∴∠CBB1=∠CB1B,∠PBB1=∠PB1B
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠CBB1=∠B1QF,
∴∠B1QF =∠CB1B,
∴QF= B1F,
∵,
∴B1F=5,EF=13,
∴,
如图,过点Q作QH⊥PB1于点H,
∵∠PB1C=90°,
∴QH∥B1F,
∴△EHQ∽△EB1F,
∴,
即,
∴EH=,QH=,
∴B1H=
∴,
∴cos∠HB1Q=
又∵∠PBB1+∠BPC=90°,∠BPC+∠PCB=90°,
∴∠PB1B=∠PBB1=∠PCB,
∴cos∠PCB = cos∠HB1Q=
又∵,
∴cos∠PCB,即,
∴PC=,
故答案为:5,
科目:初中数学 来源: 题型:
【题目】二次函数的图象与轴交于、两点(点在点的左侧),将二次函数的图象绕点旋转180度得到图象为,当时,图象上点纵坐标的最小值为,则_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请分别在下列图中使用无刻度的直尺按要求画图.
(1)在图1中,点P是ABCD边AD上的中点,过点P画一条线段PM,使PM=AB.
(2)在图2中,点A、D分别是BCEF边FB和EC上的中点,且点P是边EC上的动点,画出△PAB的一条中位线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明站在某广场一看台C处,从眼睛D处测得广场中心F的俯角为21°,若CD=1.6米,BC=1.5米,BC平行于地面FA,台阶AB的坡度为i=3:4,坡长AB=10米,则看台底端A点距离广场中心F点的距离约为(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)( )
A.8.8米B.9.5米C.10.5米D.12米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数解析式;
(2)设点M是直线l上的一个动点,当点M到点A,点C的距离之和最短时,求点M的坐标;
(3)在抛物线上是否存在点N,使S⊿ABN=S⊿ABC,若存在,求出点N的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有个分别标有数的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为,小颖在剩下的个球中随机摸出一个小球记下数为,这样确定了点的坐标.
(1)请你利用列表法或画树状图法求点的横、纵坐标均能被整除的概率.
(2)记点关于轴的对称点为,求点位于反比例函数图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(﹣1,0).若关于x的一元二次方程x2+bx+c﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有;若△ABC为锐角三角形时,小明猜想:,理由如下:如图2,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,,在Rt△ADB中,,∴.
∵a>0,x>0,∴2ax>0,∴,∴当△ABC为锐角三角形时.
所以小明的猜想是正确的.
(1)请你猜想,当△ABC为钝角三角形时, 与的大小关系.
(2)温馨提示:在图3中,作BC边上的高.
(3)证明你猜想的结论是否正确.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com