分析 (1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=-$\frac{b}{2a}$可得出对称轴的解析式.
(2)①PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,得出两函数的值的差就是PF的长;
②根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值;
③利用S=S△BPF+S△CPF,进而结合二次函数最值求法得出答案.
解答 解:(1)令y=0,则-x2+2x+3=-(x+1)(x-3)=0,
解得x=-1或x=3,则A(-1,0),B(3,0).
抛物线的对称轴是:直线x=1.
令x=0,则y=0,则C(0,3).
综上所述,A(-1,0),B(3,0),C(0,3),抛物线的对称轴是x=1;
(2)①设直线BC的函数关系式为:y=kx+b.
把B(3,0),C(0,3)分别代入得:$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$.
所以直线BC的函数关系式为:y=-x+3.
当x=1时,y=-1+3=2,
∴E(1,2).
当x=m时,y=-m+3,
∴P(m,-m+3).
在y=-x2+2x+3中,当x=1时,y=4.
∴D(1,4)
当x=m时,y=-m2+2m+3,
∴F(m,-m2+2m+3)
∴线段DE=4-2=2,
线段PF=-m2+2m+3-(-m+3)=-m2+3m
;
②∵PF∥DE,
∴当PF=ED时,四边形PEDF为平行四边形,
由-m2+3m=2,
解得:m1=2,m2=1(不合题意,舍去),
因此,当m=2时,四边形PEDF为平行四边形;
③设直线PF与x轴交于点M,由B(3,0),O(0,0),
可得:OB=OM+MB=3,
∵S=S△BPF+S△CPF
即S=$\frac{1}{2}$PF•BM+$\frac{1}{2}$PF•OM=$\frac{1}{2}$PF•(BM+OM)=$\frac{1}{2}$PF•OB,
∴S=$\frac{1}{2}$×3(-m2+3m)=-$\frac{3}{2}$m2+$\frac{9}{2}$m=-$\frac{3}{2}$(m2-3m)=-$\frac{3}{2}$(m-$\frac{3}{2}$)2+$\frac{27}{8}$(0≤m≤3),
故m=$\frac{3}{2}$时,S有最大值为:$\frac{27}{8}$.
点评 本题主要考查了二次函数的综合应用以及平行四边形的判定与性质、待定系数法求一次函数解析式等知识,根据二次函数解析式得出相关点的坐标和对称轴的解析式是解题的基础.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 7对 | B. | 8对 | C. | 9对 | D. | 10对 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com