精英家教网 > 初中数学 > 题目详情
11.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出点A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①用含m的代数式表示线段PF的长;
②当m为何值时,四边形PEDF为平行四边形?
③设△BCF的面积为S,求S与m的函数关系式,S是否有最大值?如果有,请求出;如果没有,说明理由.

分析 (1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=-$\frac{b}{2a}$可得出对称轴的解析式.
(2)①PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,得出两函数的值的差就是PF的长;
②根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值;
③利用S=S△BPF+S△CPF,进而结合二次函数最值求法得出答案.

解答 解:(1)令y=0,则-x2+2x+3=-(x+1)(x-3)=0,
解得x=-1或x=3,则A(-1,0),B(3,0).
抛物线的对称轴是:直线x=1.
令x=0,则y=0,则C(0,3).
综上所述,A(-1,0),B(3,0),C(0,3),抛物线的对称轴是x=1;

(2)①设直线BC的函数关系式为:y=kx+b.
把B(3,0),C(0,3)分别代入得:$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$.
所以直线BC的函数关系式为:y=-x+3.
当x=1时,y=-1+3=2,
∴E(1,2).
当x=m时,y=-m+3,
∴P(m,-m+3).
在y=-x2+2x+3中,当x=1时,y=4.
∴D(1,4)
当x=m时,y=-m2+2m+3,
∴F(m,-m2+2m+3)
∴线段DE=4-2=2,
线段PF=-m2+2m+3-(-m+3)=-m2+3m

②∵PF∥DE,
∴当PF=ED时,四边形PEDF为平行四边形,
由-m2+3m=2,
解得:m1=2,m2=1(不合题意,舍去),
因此,当m=2时,四边形PEDF为平行四边形;
③设直线PF与x轴交于点M,由B(3,0),O(0,0),
可得:OB=OM+MB=3,
∵S=S△BPF+S△CPF
即S=$\frac{1}{2}$PF•BM+$\frac{1}{2}$PF•OM=$\frac{1}{2}$PF•(BM+OM)=$\frac{1}{2}$PF•OB,
∴S=$\frac{1}{2}$×3(-m2+3m)=-$\frac{3}{2}$m2+$\frac{9}{2}$m=-$\frac{3}{2}$(m2-3m)=-$\frac{3}{2}$(m-$\frac{3}{2}$)2+$\frac{27}{8}$(0≤m≤3),
故m=$\frac{3}{2}$时,S有最大值为:$\frac{27}{8}$.

点评 本题主要考查了二次函数的综合应用以及平行四边形的判定与性质、待定系数法求一次函数解析式等知识,根据二次函数解析式得出相关点的坐标和对称轴的解析式是解题的基础.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.解方程:$\frac{4x-1.6}{0.5}$-$\frac{3x-5.4}{0.2}$=$\frac{1.8-x}{0.1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0-x1)(x0-x2)<0.
其中正确的结论是①、④.(只填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题:
①△AED∽△BEC           
②∠AEB=90°
③∠BDA=45°  
④图中全等的三角形共有3对.
其中正确的命题有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F,那么线段BE,CE,AF三者之间的数量关系是BE=CE+2AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已等腰Rt△ABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰Rt△ADE,∠DAE=90°.连接CE.
(1)如图,求证:△ACE≌△ABD;
(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;
(3)若AC=$\sqrt{8}$,当CD=1时,请直接写出DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.点A、B、C是⊙O上三点,AC是⊙O的内接正六边形的一边,AB是⊙O的内接正十二边形的一边,BC是⊙O的内接正n边形的一边,则n=12或4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知:如图,菱形ABCD的四边相等,且对角线互相垂直平分.在菱形ABCD中,对角线AC、DB相交于点O,且AC≠BD,则图中全等三角形有(  )
A.7对B.8对C.9对D.10对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为$\sqrt{17}$.

查看答案和解析>>

同步练习册答案