精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,CAB上一点,点DE分别在AB两侧,ADBE,且ADBCBEAC

1)求证:CDCE

2)连接DE,交AB于点F,猜想BEF的形状,并给予证明.

【答案】1)见解析;(2BEF为等腰三角形,证明见解析.

【解析】

1)先由ADBE得出AB,再利用SAS证明ADC≌△BCE即得结论;

2)由(1)可得CDCE,∠ACD=∠BEC,再利用等腰三角形的性质和三角形的外角性质可得∠BFE=∠BEF,进一步即得结论.

1)证明:∵ADBE,∴∠A=∠B

ADCBCE

∴△ADC≌△BCESAS),

CDCE

2)解:BEF为等腰三角形,证明如下:

由(1)知ADC≌△BCE

CDCE,∠ACD=∠BEC

∴∠CDE=∠CED

∴∠CDE+ACD=∠CED+BEC

即∠BFE=∠BEF

BEBF

∴△BEF是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=4,CD=3,ABC=ACB=ADC=45°,则BD的长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)

(1)若商店计划销售完这批商品后能获利1 100元,请问甲、乙两种商品应分别购进多少件?

(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并指出获利最大的购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=(2m+1)x+m﹣3

(1)若函数图象经过原点,求m的值;

(2)若函数图象与y轴的交点坐标为(0,﹣2),求m的值;

(3)若y随着x的增大而增大,求m的取值范图;

(4)若函数图象经过第一、三,四象限,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M为等腰△ABD的底AB的中点,过DDCAB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点PA点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).

(1)t(s)为何值时,点QBC上运动,t(s)为何值时,点QCD上运动;

(2)求St之间的函数关系式;

(3)当t为何值时,S有最大值,最大值是多少?

(4)当点QCD上运动时,直接写出t为何值时,△MPQ是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学举办网络安全知识答题竞赛,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.

平均分(分)

中位数(分)

众数(分)

方差(分2

七年级

a

85

b

S七年级2

八年级

85

c

100

160

1)根据图示填空:a   b   c   

2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?

3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).

(1)在图中画出△ABC关于原点对称的△A1B1C1

(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2

(3)在(2)的条件下,求点A运动路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,是两种长方形铝合金窗框,已知窗框的长都是y米,窗框的宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框2个.

(1)用含x、y的式子表示共需铝合金的长度;

(2)若1m铝合金的平均费用为100元,求当x=1.2,y=1.5时,铝合金的总费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.

1两地相距______千米,甲的速度为______千米/分;

2)直接写出点的坐标______,求线段所表示的之间的函数表达式;

3)当乙到达终点时,甲还需______分钟到达终点

查看答案和解析>>

同步练习册答案