| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
分析 在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
解答
解:在Rt△AOB中,AD=2,AD为斜边OB的中线,
∴OB=2AD=4,
由周长为4+2$\sqrt{5}$,得到AB+AO=2$\sqrt{5}$,
设AB=x,则AO=2$\sqrt{5}$-x,
根据勾股定理得:AB2+OA2=OB2,即x2+(2$\sqrt{5}$-x)2=42,
整理得:x2-2$\sqrt{5}$x+2=0,
解得x1=$\sqrt{5}$+$\sqrt{3}$,x2=$\sqrt{5}$-$\sqrt{3}$,
∴AB=$\sqrt{5}$+$\sqrt{3}$,OA=$\sqrt{5}$-$\sqrt{3}$,
过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
∴OE=$\frac{1}{2}$OA=$\frac{1}{2}$($\sqrt{5}$-$\sqrt{3}$)(假设OA=$\sqrt{5}$+$\sqrt{3}$,若OA=$\sqrt{5}$-$\sqrt{3}$,求出结果相同),
在Rt△DEO中,利用勾股定理得:DE=$\sqrt{O{D}^{2}-O{E}^{2}}$=$\frac{1}{2}$($\sqrt{5}$+$\sqrt{3}$),
∴k=-DE•OE=-$\frac{1}{2}$($\sqrt{5}$+$\sqrt{3}$)×$\frac{1}{2}$($\sqrt{5}$-$\sqrt{3}$)=-$\frac{1}{2}$,
∴S△AOC=$\frac{1}{2}$DE•OE=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$,
故选A.
点评 本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com