精英家教网 > 初中数学 > 题目详情
1.如图,P为⊙O直径AB上的一个动点,点C,D为半圆的三等分点,若AB=12,则图中阴影部分的面积为6π.

分析 连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.

解答 解:连接OC、OD、CD.
∵△COD和△CPD等底等高,
∴S△COD=S△PCD
∵点C,D为半圆的三等分点,
∴∠COD=180°÷3=60°,
∴阴影部分的面积=S扇形COD=$\frac{60π×{6}^{2}}{360}$=6π.
故答案为:6π.

点评 此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,点A,B分别在x轴的正、负半轴上(其中OA<OB),点C在y轴的正半轴上,AB=10,OC=4,∠ABC=∠ACO.
(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点D的坐标为(-4,0),P是该抛物线上的一个动点.
①直线DP交直线BC于点E,当△BDE是等腰三角形时,直接写出此时点E的坐标;
②连结CD,CP,若∠PCD=∠CBD,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,⊙O与Rt△ACB的两直角边AC、BC相切,切点分别为D、E两点,且圆心O在斜边AB上.
(1)试判断以O、D、C、E为顶点的四边形是什么特殊的四边形,并说明理由.
(2)若AC=6,BC=8,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知Rt△ABC中,∠BAC=90°,AB=AC,△CDE的边CE在射线AC上,CE<AC,∠DCE=90°,CD=CA,沿CA方向平移△CDE,使点C移动到点A,得到△ABF,过点F作FG⊥BC,垂足为点G,连接EG,DG.
(1)如图1,边CE在线段AC上,求证:GC=GF;
(2)在以下A,B两题中任选一题解答,我选择A题.
A.在图1中,求证:△EFG≌△DCG;
B.如图2,边CE在线段AC的延长线上,其余条件不变.
①在图2中,求证:△EFG≌△DCG;
②若∠CDE=20°,直接写出∠CGE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.在平面直角坐标系中,点P(-3,2)关于直线y=x对称点的坐标是(  )
A.(-3,-2)B.(3,2)C.(2,-3)D.(3,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知点C是线段AB的黄金分割点(AC>BC),AC=4,则线段AB的长为(  )
A.2$\sqrt{5}$-2B.2$\sqrt{5}$+2C.6-2$\sqrt{5}$D.6+2$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某剧院的观众席的座位为扇形,且按下列方式设置:
排数(x)1234
座位数(y)50535659
(1)按照上表所示的规律,当x每增加1时,y如何变化?
(2)写出座位数y与排数x之间的关系式;
(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.化简:($\frac{{m}^{2}}{m-1}+\frac{1}{1-m}$)÷(m2+2m+1)

查看答案和解析>>

同步练习册答案