精英家教网 > 初中数学 > 题目详情

【题目】某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的安全高度hm,成人的安全高度2m(计算结果精确到0.1m

1)当摆绳OAOB45°夹角时,恰为儿童的安全高度,则h   m

2)某成人在玩秋千时,摆绳OCOB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41sin55°≈0.82cos55°≈0.57tan55°≈1.43

【答案】(1)1.5;(2)成人是安全的.

【解析】

1)根据余弦定理先求出OE,再根据AF=OB+BD,求出DE,即可得出h的值;
2)过C点作CMDF,交DF于点M,根据已知条件和余弦定理求出OE,再根据CM=OB+DE-OE,求出CM,再与成人的安全高度进行比较,即可得出答案.

解:(1)在RtANO中,∠ANO90°

cosAON

ONOAcosAON

OAOB3m,∠AON45°

ON3cos45°≈2.12m

ND3+0.62.12≈1.5m

hNDAF≈1.5m

故答案为1.5

2)如图,过C点作CMDF,交DF于点M

RtCEO中,∠CEO90°

cosCOE

OEOCcosCOF

OBOC3m,∠CON55°

OE3cos55°≈1.72m

ED3+0.61.72≈1.9m

CMED≈1.9m

∵成人的安全高度2m

∴成人是安全的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,E是边BC的中点.AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证AME≌△ECF,所以AE=EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把E是边BC的中点改为E是边BC(B,C)的任意一点,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,EBC的延长线上(C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立。你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的对角线ACBD相交于点O

1)如图1EG分别是OBOC上的点,CEDG的延长线相交于点F.若DFCE,求证:OEOG

2)如图2HBC上的点,过点HEHBC,交线段OB于点E,连结DHCE于点F,交OC于点G.若OEOG

求证:∠ODG=∠OCE

AB1时,求HC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是(  )

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+c(a0)的对称轴为直线x=﹣1,且抛物线经过A(10)C(03)两点,与x轴交于点B

(1)若直线ymx+n经过BC两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为,顶点距水面,小孔顶点距水面.当水位上涨刚好淹没小孔时,大孔的水面宽度为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.

(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.

(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形中,经顺时针旋转后与重合.

1)旋转中心是点 ,旋转了 度;

2)如果,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是(  )

A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12

查看答案和解析>>

同步练习册答案