精英家教网 > 初中数学 > 题目详情
12.已知关于x的方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线y=kx2+(2k+1)x+2(k为正整数)图象与x轴两个交点的横坐标均为整数,求此抛物线的解析式;
(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.

分析 (1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;
(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.
(3)根据题意得到kx2+(2k+1)x+2-y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.

解答 (1)证明:①当k=0时,方程为x+2=0,所以x=-2,方程有实数根,
②当k≠0时,∵△=(2k+1)2-4k×2=(2k-1)2≥0,即△≥0,
∴无论k取任何实数时,方程总有实数根;

(2)解:令y=0,则kx2+(2k+1)x+2=0,
解关于x的一元二次方程,得x1=-2,x2=-$\frac{1}{2}$,
∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,
∴k=1.
∴该抛物线解析式为y=x2+3x+2;
(3)依题意得kx2+(2k+1)x+2-y=0恒成立,即k(x2+2x)+x-y+2=0恒成立,
则$\left\{\begin{array}{l}{{x}^{2}+2x=0}\\{x-y+2=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$.
所以该抛物线恒过定点(0,2)、(-2,0).

点评 本题考查了抛物线与x轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60cm和38cm,则△ABC的腰和底边长分别为(  )
A.24 cm和12 cmB.16 cm和22 cmC.20 cm和16 cmD.22 cm和16 cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知青椒每斤3元,西红柿每斤2元,小张妈妈以每斤2.5元混合买了a斤青椒和b斤西红柿,结果小张发现妈妈亏钱了,原因是(  )
A.a<bB.a>bC.a=bD.与a,b大小无关

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图,点D在线段BC上,若∠BAC=90°,则∠BCE等于90度;
(2)设∠BAC=α,∠BCE=β.
①如图,若点D在线段BC上移动,则α与β之间有怎样的数量关系?请说明理由;
②若点D在直线BC上移动,则α与β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知△ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,请你用不同的方法证明:DE=DF.(用到相同的知识点即视为同一种方法)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.对于任意的实数x,代数式x2-5x+10的值是一个(  )
A.正数B.负数C.非负数D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.根据绝对值的几何意义解不等式|x+2|≤1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC(∠BAC是一个可以变化的角),AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小明是这样思考的:利用变换和等边三角形将边的位置重新组合,他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A'BC,连接A'A,当点A落在A'C上时,此题可解(如图2)
(1)请你回答:AP的最大值是6.
参考小明同学思考问题的方法,解决下列问题:
(2)如图3,等腰 Rt△ABC,边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是多少?为什么?(结果可以不化简)
提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的作法,把△ABP绕B点逆时针旋转60°,得到△A'BP'.
(3)如图4,O是等边△ABC内一点,OA=3,OB=4,OC=5,则S△AOC+S△AOB=6+$\frac{9}{4}\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某电信公司有甲、乙两种手机收费业务,仅上网流量收费不同,图中I1、I2分别表示甲、乙两种业务每月流量费用y(元)与上网流量x(GB)的之间的函数关系.
(1)分别求出甲、乙两种业务每月所收费用y元与上网流量x(GB)之间的函数关系式.
(2)已知刘老师选择了甲业务,魏老师选择了乙业务,上月两位老师所用流量相同,均为mGB,上网流量费用相差不到20元,求m的取值范围.

查看答案和解析>>

同步练习册答案