【题目】在平面直角坐标系xOy中,抛物线y=mx2-2mx +m-4 (m≠0)的顶点为A,与x轴交于B,C两点(B在点C左侧),与y轴交于点D.
(1)求点A的坐标;
(2)若BC=4,
①求抛物线的解析式;
②将抛物线在C,D之间的部分记为图象G (包含C,D两点) . 若过点A的直线y= kx+ b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.
【答案】(1)(1,-4);(2)①y= x2-2x-3;②-1≤k<0或0<k≤2
【解析】
(1)把一般式配成顶点式,即可得到A点坐标;
(2)根据对称轴,先求出点B、C的坐标,然后利用待定系数法,即可求出解析式;
②先求出点D(0,-3),画出抛物线,通过画图可得当k>0时,直线y=kx+b过A、C时,k最大;当k<0,直线y=kx+b过A、D时,k最大,然后分别求出两直线解析式,即可得到k的范围.
解:(1)y=mx2-2mx +m-4
=m(x2-2x+1)-4
=m(x-1)2-4.
∴点A的坐标为(1,-4) .;
(2)①由(1)得,抛物线的对称轴为:x= 1.
∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,
∴点B的坐标为(-1,0),点C的坐标为(3,0) .
∴m+ 2m +m-4=0
∴m=1.
∴抛物线的解析式为:y= x2-2x-3;
②由①可得点D的坐标为:(0,-3).
当直线过点A, D时,解得:k=-1.
当直线过点A, C时,解得:k=2.
结合函数的图象可知,k的取值范围为:-1≤k<0或0<k≤2.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程mx2﹣2x+2﹣m=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)当m为何整数时,方程有两个不相等的整数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.
(1)如图1,若AD经过圆心O,求BD,CD的长;
(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:角的内部一点到角两边的距离比为1:2,这个点与角的顶点所连线段称为这个角的二分线.如图1,点P为∠AOB内一点,PA⊥OA于点A,PB⊥OB于点B,且PB=2PA,则线段OP是∠AOB的二分线.
(1)图1中,OP为∠AOB的二分线,PB=4,PA=2,且OA+OB=8,求OP的长;
(2)如图2,正方形ABCD中,AB=2,点E是BC中点,证明:DE是∠ADC的二分线;
(3)如图3,四边形ABCD中,AB∥CD,∠ABC=90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分别是∠DAB,∠ADC的二分线,证明:四边形ABCD是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(3, 2),点B的坐标为(3, 0). 作如下操作:①以点A为旋转中心,把△ABO顺时针旋转90°,得到△ACD;
(1)在图中画出△ACD;
(2)①请直接写点B旋转到点C的路径长:____________;
②画出△ABO关于点O的中心对称图形△EOF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,则△ABD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,则△ABD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,∠DAB=45°,AB是⊙O的直径,点D在⊙O上,
(1)求证:CD是⊙O的切线;
(2)若AB=2,求图中阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1)、B(﹣3,﹣2)C(0,﹣3)
(1)以点C为旋转中心将△ABC顺时针旋转90°,得到△A1B1C1,则A1的坐标为 ;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;
(3)若网格单位长度为1,求(1)中AB扫过的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com