精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程mx22x+2m0

1)证明:不论m为何值时,方程总有实数根;

2)当m为何整数时,方程有两个不相等的整数根.

【答案】1)见解析;(2m的值为﹣1和﹣22

【解析】

1)求出判别式的值为4m-12≥0,据此可得答案;(2)先根据求根公式用m表示出x1x2的值,再根据x1x2均为整数即可得出m的值

1)∵△=(﹣224m×(2m

48m+4m2

4m22m+1

4m120

∴不论m为何值时,方程总有实数根;

2)∵(x1)(mx2+m)=0

x11x21

要使x1x2均为整数,必为整数.

∴当m取±1、±2时,x1x2均为整数.

m1时,△=4m120,此时方程有两个相等的实数根,不符合题意,舍去;

m的值为﹣1和﹣22

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.
1)求yx的函数关系式并直接写出自变量x的取值范围;
2)设每月的销售利润为W,请直接写出Wx的函数关系式;
3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】西宁教育局在局属各初中学校设立自主学习日.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:

(1)此次抽查的样本容量为____________,请补全条形统计图;

(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?

(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动.请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1GCD边上的一个动点(点GCD不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DEBG的延长线于点H.

1)求证:①△BCG≌△DCE②BH⊥DE.

2)当点G运动到什么位置时,BH垂直平分DE?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014—2018年我国研究与试验发展(R&D)经费支出及其增长速度情况. 2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.

根据统计图提供的信息,下列说法中合理的是(

A. 2014—2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加

B. 2014—2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017

C. 2014—2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017

D. 2018年,基础研究经费约占该年研究与试验发展( (R&D)经费支出的10%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年720日猪肉价格比今年年初上涨了60%,某市民今年720日在某超市购买1千克猪肉花了80元钱.

1)问:今年年初猪肉的价格为每千克多少元?

2)某超市将进货价为每千克65元的猪肉,按720日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料,并按要求完成相应的任务:

莱昂哈德欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其中外心和内心,则OI2R22Rr

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙IAB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OId,则有d2R22Rr

下面是该定理的证明过程(部分):

延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DMAN

∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).

∴△MDI∽△ANI

IAIDIMIN,①

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

DE是⊙O的直径,所以∠DBE90°

∵⊙IAB相切于点F,所以∠AFI90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对的圆周角相等),

∴△AIF∽△EDB

IABDDEIF

任务:(1)观察发现:IMR+dIN  (用含Rd的代数式表示);

2)请判断BDID的数量关系,并说明理由.

3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

4)应用:在RtABCC90°AC=6cm, BC=8cm,OAB中点,点I是△ABC的内心,则OI=  cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售, 已知加工过程中质量损耗了40%, 该商户对该茶叶试销期间, 销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数,且x=35时,y=45x=42时,y=38

1)求一次函数的表达式;

2)若该商户每天获得利润(不计加工费用)W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?

3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块材料的形状是锐角三角形ABC,边BC长120mm,高AD为80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.

(1)图中与ABC相似的三角形是哪一个,说明理由;

(2)这个正方形零件的边长为多少?

查看答案和解析>>

同步练习册答案