【题目】如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从A出发沿AB以3cm/s的速度向点B移动,一直到达点B为止;同时,点Q从点C出发沿以2cm/s的速度向点D移动.经过多长时间P、Q两点的距离是10?
科目:初中数学 来源: 题型:
【题目】太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3…如此进行下去,则C2019的顶点坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:
(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.
(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.
(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙P的圆心P(m,n)在抛物线y=上.
(1)写出m与n之间的关系式;
(2)当⊙P与两坐标轴都相切时,求出⊙P的半径;
(3)若⊙P的半径是8,且它在x轴上截得的弦MN,满足0≤MN≤2时,求出m、n的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=的图象如图所示,以下结论:①常数m<﹣2;②若A(﹣1,h),B(2,k)在图象上,则h<k;③y随x的增大而减小;④若P(x,y)在图象上,则P'(﹣x,﹣y)也在图象上.其中正确的是( )
A. ①②B. ③④C. ②③D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为(3,1),点B的坐标(﹣1,n).
(1)分别求两个函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.
(1)求抛物线的解析式;
(2)求出C、D两点的坐标
(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是( )
A. ∠A=55°,∠D=35°
B. AC=9,BC=12,DF=6,EF=8
C. AC=3,BC=4,DF=6,DE=8
D. AB=10,AC=8,DE=15,EF=9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com