【题目】如图,等边△ABC的周长是12,D是AC边上的中点,点E在BC边的延长线上,如果DE=DB,那么CE的长是_______.
【答案】2
【解析】
由△ABC为等边三角形,且BD为边AC的中线,根据“三线合一”得到BD平分∠ABC,而∠ABC为60°,得到∠DBE为30°,又因为DE=DB,根据等边对等角得到∠E与∠DBE相等,故∠E也为30°;
由等边三角形的三边相等且周长为9,求出AC的长为3,且∠ACB为60°,根据∠ACB为△DCE的外角,根据三角形的外角等于与它不相邻的两个内角之和,求出∠CDE也为30°,根据等角对等边得到CD=CE,都等于边长AC的一半,从而求出CE的值.
∵△ABC为等边三角形,D为AC边上的中点,
∴BD为∠ABC的平分线,且∠ABC=60°,
即∠DBE=30°,又DE=DB,
∴∠E=∠DBE=30°,
∵等边△ABC的周长为9,
∴AC=3,且∠ACB=60°,
∴∠CDE=∠ACB∠E=30°,即∠CDE=∠E,
∴CD=CE=AC=2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】生活与数学
(1)莹莹在日历上圈出三个数,呈大写的“一”字,这三个数的和是中间数的 倍,莹莹又在日历上圈出5个数,呈“十”字框形,它们的和是50,则中间的数是 :
(2)小丽同学也在某月的日历上圈出如图所示“七”字形,发现这八个数的和是125,那么这八个数中最大数为 :
(3)在第(2)题中这八个数之和 为101(填“能”或“不能”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:,OE平分,点A、B、C分别是射线OM、OE、ON上的动点、B、C不与点O重合,连接AC交射线OE于点设.
如图1,若,则
的度数是______;
当时,______;当时,______.
如图2,若,则是否存在这样的x的值,使得中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(一)阅读
求x+6x+11的最小值.
解:x+6x+11
=x2+6x+9+2
=(x+3)2+2
由于(x+3)2的值必定为非负数,所以(x+3)2+2,即x2+6x+11的最小值为2.
(二)解决问题
(1)若m2+2mn+2n2-6n+9=0,求()-3的值;
(2)对于多项式x2+y-2x+2y+5,当x,y取何值时有最小值,最小值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①HE=HF;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=-的图象的两个分支分布在第_________象限,在每个象限内,y随x的增大而_________,函数y=的图象的两个分支分布在第_________象限,在每一个象限内,y随x的减小而_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com