精英家教网 > 初中数学 > 题目详情

【题目】如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为n为整数)l经过这九个格点中的三个,则满足这样条件的抛物线条数为_________

【答案】8

【解析】

根据题意,分别讨论当n是奇数或偶数时,抛物线的情况,即可完成.

n为奇数时,抛物线开口向下,如图1,将点E、H、C的坐标代入抛物线解析式、判断抛物线经过这三点,经过平移,还可以得到另外3条,所以共有4种可能;

n为偶数时,抛物线开口向上,如图2,将点E、H、C的坐标代入抛物线解析式、判断抛物线经过这三点,经过平移,还可以得到另外3条,所以共有有4种可能;

所有满足条件的抛物线共有8.

故答案为:8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC,C=90,AB=10cm,AC=8cm,P从点A开始出发向点C2cm/s的速度移动,QB点出发向点C1cm/s的速度移动,PQ分别同时从A,B出发,几秒后四边形APQB是△ABC面积的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A的坐标是(﹣10),点B的坐标是(90),以AB为直径作⊙O′,交y轴的负半轴于点C,连接ACBC,过ABC三点作抛物线.

1)求点C的坐标及抛物线的解析式;

2)点EAC延长线上一点,∠BCE的平分线CD⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;

3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+c经过点(﹣20),且对称轴为直线x1,其部分图象如图所示.对于此抛物线有如下四个结论:

ac016a+4b+c0mn0,则x1+m时的函数值大于x1n时的函数值;点(﹣0)一定在此抛物线上.其中正确结论的序号是(  )

A. ①②B. ②③C. ②④D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥最是令人喜爱,如图所示,玉带桥的桥拱是抛物线形水面宽度AB10m,桥拱最高点C到水面的距离为6m

1)建立适当的平面直角坐标系,求抛物线的表达式;

2)现有一艘游船高度是4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如1△ABC中,BA=BCD是平面内不与ABC重合的任意一点,∠ABC=DBEBD=BE

1)求证:ABD≌△CBE

2)如图2,当点DABC的外接圆圆心时:

①请判断四边形BDCE的形状,并证明你的结论

②当∠ABC为多少度时,点E在圆D上?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,BC=8cmAC=6cm.点PB出发沿BAA运动,速度为每秒1cm,点E是点BP为对称中心的对称点,点P运动的同时,点QA出发沿ACC运动,速度为每秒2cm,当点Q到达顶点C时,PQ同时停止运动,设PQ两点运动时间为t秒.

(1)t为何值时,PQBC

(2)设四边形PQCB的面积为y,求y关于t的函数关系式;

(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;

(4)t为何值时,△AEQ为等腰三角形?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB于点E,点G在直径DF的延长线上,∠D=G=30°.

(1)求证:CG是⊙O的切线 (2)若CD=6,求GF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+4 经过点A(﹣3,0),点 B 在抛物线上,CBx轴,且AB 平分CAO.则此抛物线的解析式是___________

查看答案和解析>>

同步练习册答案