【题目】已知:抛物线y=x2+bx+c经过点(2,-3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;
(3)在(2)的条件下,当-2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.
【答案】
(1)解:解:把(2,-3)和(4,5)分别代入y=x+bx+c
得: ,解得: ,
∴抛物线的表达式为:y=x-2x-3.
∵y=x-2x-3=(x-1)2-4.
∴顶点坐标为(1,-4)
(2)解:∵将抛物线沿x轴翻折,
得到图象G与原抛物线图形关于x轴对称,
∴图像G的表达式为:y=-x+2x+3
(3)解:如图,
当0≤x<2时,y=m过抛物线顶点(1,4)时,
直线y=m与该图象有一个公共点,
此时y=4,∴m=4.
当-2<x<0时,直线y=m与该图象有一个公共点,
当y=m过抛物线上的点(0,3)时, y=3,∴m=3.
当y=m过抛物线上的点(-2,-5)时, y=-5,∴m=-5.
∴-5<m<3.
综上:m的值为4,或-5<m≤3.
【解析】(1)用待定系数法把(2,-3)和(4,5)分别代入y=x+bx+c,求出抛物线的表达式,根据顶点式得到顶点坐标;(2)根据抛物线沿x轴翻折,得到图象G与原抛物线图形关于x轴对称,得到图像G的表达式;(3)根据题意当0≤x<2时,y=m过抛物线顶点(1,4)时,直线y=m与该图象有一个公共点,求出y、m的值;当-2<x<0时,直线y=m与该图象有一个公共点,当y=m过抛物线上的点(0,3)时,求出y、m的值;当y=m过抛物线上的点(-2,-5)时,得到-5<m<3;求出m的值或取值范围.
科目:初中数学 来源: 题型:
【题目】父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格。
距离地面高度(千米) | 0 | 1 | 2 | 3 | 4 | 5 |
温度(℃) | 20 | 14 | 8 | 2 |
根据上表,父亲还给小明出了下面几个问题,你和小明一起回答。
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?
(3)你能猜出距离地面6千米的高空温度是多少吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD相交于点H,如果∠GFH与∠BHC互补.
(1)说明:∠1=∠2.
(2)若∠A=80°,FG⊥AC,求∠ACB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为( )
A. 12B. 14C. 16D. 18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD,E是BC的中点,连接AE,过点B作射线BM交正方形的一边于点F,交AE于点O.
(1)若BF⊥AE,
①求证:BF=AE;
②连接OD,确定OD与AB的数量关系,并证明;
(2)若正方形的边长为4,且BF=AE,求BO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形 的边长 .某一时刻,动点 从 点出发沿 方向以 的速度向 点匀速运动;同时,动点 从 点出发沿 方向以 的速度向 点匀速运动,问:
(1)经过多少时间, 的面积等于矩形 面积的 ?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与 相似?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数 ,当x=1时,y=3;当x=3时,y=1,即当 时,有 ,所以说函数 是闭区间[1,3]上的“闭函数”.
(1)反比例函数y= 是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y= 是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程与离家时间的关系图,请根据图回答下列问题:
(1)小明家到和平公园的路程为 ,他在书城逗留的时间为 ;
(2)图中点表示的意义是 ;
(3)求小明的妈妈驾车的平均速度(平均速度=).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com