【题目】如图,已知矩形 的边长 .某一时刻,动点 从 点出发沿 方向以 的速度向 点匀速运动;同时,动点 从 点出发沿 方向以 的速度向 点匀速运动,问:
(1)经过多少时间, 的面积等于矩形 面积的 ?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与 相似?若存在,求t的值;若不存在,请说明理由.
【答案】
(1)解:设经过 秒后, 的面积等于矩形 面积的 ,
则有: ,即 ,
解方程,得 .
经检验,可知 符合题意,所以经过1秒或2秒后, 的面积等于矩形 面积的
(2)解:假设经过 秒时,以 为顶点的三角形与 相似,
由矩形 ,可得 ,
因此有 或
即 ①,或 ②.
解①,得 ;解②,得
经检验, 或 都符合题意,所以动点 同时出发后,经过 秒或 秒时,以 为顶点的三角形与 相似
【解析】(1)根据△AMN的面积等于矩形ABCD面积的,得到一元二次方程,求出它的解,求出时间;(2)根据相似三角形的判定方法,两边对应成比例且夹角相等,两三角形相似;求出t的值;此题是综合题,难度较大,计算和解方程时需认真仔细.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式与点B坐标;
(2)求△AOB的面积;
(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣ x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:
(1)乙队单独做需要多少天才能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=x2+bx+c经过点(2,-3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;
(3)在(2)的条件下,当-2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:① 如图2,点M,N在反比例函数 (k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= 与y轴交于点A,与直线y=﹣ 交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣ 上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为、、过点A的直线AD与y轴正半轴交于点D,
求直线AD和BC的解析式;
如图2,点E在直线上且在直线BC上方,当的面积为6时,求E点坐标;
在的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当周长最小时,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,请证明∠A+∠B+∠C=180°
(2)如图的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D
(3)如图,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明
(4)如图,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com