精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,且点A02),点C10),BEx轴于点E,一次函数y=x+b经过点B,交y轴于点D

1)求证:△AOC≌△CEB

2)求△ABD的面积.

【答案】(1)详见解析;(2)6.

【解析】

1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=BCE,根据AAS,可得答案;

2)根据全等三角形的性质,可得B点坐标,根据待定系数法,可得b的值,根据三角形的面积公式,可得答案.

1)证明:∵BECE

∴∠BEC=90°

∵△ABC是等腰直角三角形,

AC=BC,∠ACB=90°

∵∠O=ACB=90°

∴∠OAC+ACO=90°,∠ACO+BCE=90°

∴∠OAC=BCE

RtAOCRtCEB中,

RtAOCRtCEBAAS);

2)如图:作BFy轴于F点,

RtAOCRtCEB

CE=OA=2BE=OC=1

OE=CC+CE=1+2=3

B31),BF=3

B点坐标代入y=x+b,得3+b=1

解得b=-2

直线BD的解析式为y=x-2

x=0时,y=-2,即D0-2),

SABD=ADBF=×[2--2]×3=6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.

(1试判断直线CD与⊙O的位置关系,并说明理由;

(2若AD=2,AC=,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;

(2)如图2,若点P在线段AB的中点,连接AC,判断ACE的形状,并说明理由;

(3)如图3,若点P在线段AB上,连接AC,当EP平分AEC时,设AB=a,BP=b,求a:b及AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+3x8的图象与x轴交于AB两点(点A在点B的右侧),与y轴交于点C

1)求直线BC的解析式;

2)点F是直线BC下方抛物线上的一点,当BCF的面积最大时,在抛物线的对称轴上找一点P,使得BFP的周长最小,请求出点F的坐标和点P的坐标;

3)在(2)的条件下,是否存在这样的点Q0m),使得BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①为RtAOBAOB=90°,其中OA=3OB=4.将AOB沿x轴依次以ABO为旋转中心顺时针旋转.分别得图②,图③,则旋转到图⑩时直角顶点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于M,N.

(1如图1,若点O与点A重合,则OM与ON的数量关系是__________________;

(2如图2,若点O正方形的中心(即两对角线的交点,则(1中的结论是否仍然成立?请说明理由

(3如图3,若点O在正方形的内部(含边界,当OM=ON时,请探究点O在移动过程中可形成什么图形?

(4如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部移动所形成的图形”提出一个正确的结论.(不必说理

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列因式分解的过程,再回答所提出的问题:

1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]

=(1+x)2(1+x)

=(1+x)3

(1)上述分解因式的方法是 ,共应用了 .

(2)若分解1+x+x(x+1)+x(x+1)2++ x(x+1)2004,则需应用上述方法 次,结果是 .

(3)分解因式:1+x+x(x+1)+x(x+1)2++ x(x+1)n(n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景点的门票价格如表:

购票人数/

1~50

51~100

100以上

每人门票价/

12

10

8

某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.

(1)两个班各有多少名学生?

(2)团体购票与单独购票相比较,两个班各节约了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是4DAC的平分线交DC于点E,若点PQ分别是ADAE上的动点,则DQ+PQ的最小值(  )

A2

B4

C

D

查看答案和解析>>

同步练习册答案