精英家教网 > 初中数学 > 题目详情

【题目】尺规作图:如图,AD为⊙O的直径。

(1)求作:⊙O的内接正六边形ABCDEF.(要求:不写作法,保留作图痕迹)

(2)已知连接DF,⊙O的半径为4,求DF的长。

【答案】1)见解析;(24

【解析】

1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF
2)连接OF,可得OFE是等边三角形,边长为4,可求得∠OEF=60°,∠DFE=30°,设BEDF交于G点,可得∠FGE=90°,即可求得FG的长,进而求得FD的长.

1)如图,正六边形ABCDEF为所作;

2)连接OF,设BEDF交于G

∵六边形ABCDEF为正六边形

∴∠FOE=60°DF=DE,∠DEF=120°

∴∠DFE=30°

OE=OF

∴△FOE为等边三角形

EF=OE=4,∠OEF=60°

∴∠FGE=90°

EG=OE=2

FG=

FD=2FG=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y表示,且抛物线上的点COB的水平距离为3m,到地面OA的距离为m

1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=﹣3,此二次函数的解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴于点A(﹣30)和点B,交y轴于点C03).

1)求抛物线的函数表达式;

2)若点P在抛物线上,且,求点P的坐标;

3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在函数学习中,我们经历了确定函数表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时我们也学习了绝对值的意义,结合上面经历的学习过程,现在来解决下面的问题:在函数y|kx1|+b中,当x2时,y=﹣3x0时,y=﹣2

1)求这个函数的表达式;

2)用列表描点的方法画出该函数的图象;请你先把下面的表格补充完整,然后在下图所给的坐标系中画出该函数的图象;

x

6

4

2

0

2

4

6

y

   

0

1

2

3

2

   

3)观察这个函数图象,并写出该函数的一条性质;

4)已知函数y x0)的图象如图所示,与y|kx1|+b的图象两交点的坐标分别是(2+42),(22,﹣1),结合你画的函数图象,直接写出|kx1|+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数的图象,其对称轴为x=1,下列结论:abc>0②2a+b=0③4a+2b+c<0(y1)(y2)是抛物线上两点,则y1<y2,其中正确的结论有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.

(1)求证:△ABE∽△DEF.

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】武汉市某中学进行九年级理化实验考查,有AB两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.

1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;

2)他们三人中至少有两人参加实验B的概率   (直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DCBD,连结AC,过点DDEAC,垂足为E

1)求证:ABAC

2)求证:DE为⊙O的切线;

3)若⊙O的半径为5sinB,求DE的长.

查看答案和解析>>

同步练习册答案