精英家教网 > 初中数学 > 题目详情

【题目】在函数学习中,我们经历了确定函数表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时我们也学习了绝对值的意义,结合上面经历的学习过程,现在来解决下面的问题:在函数y|kx1|+b中,当x2时,y=﹣3x0时,y=﹣2

1)求这个函数的表达式;

2)用列表描点的方法画出该函数的图象;请你先把下面的表格补充完整,然后在下图所给的坐标系中画出该函数的图象;

x

6

4

2

0

2

4

6

y

   

0

1

2

3

2

   

3)观察这个函数图象,并写出该函数的一条性质;

4)已知函数y x0)的图象如图所示,与y|kx1|+b的图象两交点的坐标分别是(2+42),(22,﹣1),结合你画的函数图象,直接写出|kx1|+b的解集.

【答案】(1)y=||-3;(2)1,-1;(3)当x2时,yx增大而增大;或当x2时,yx减小而减小;(422≤x+4

【解析】

1)由题意利用待定系数法构建方程组即可解决问题.

2)由题意利用描点法即可解决问题.

3)由题意观察图象,写出函数的性质即可.

4)由题意求出点EF的坐标即可解决问题.

解:(1)把x0y=﹣2x2y=﹣3代入y|kx1|+b中,得

2|1|+b,﹣3|2k1|3

∴b=﹣3∴k

∴y=||-3

2∵x=﹣6时,y1

x6时,y=﹣1

故答案为1,﹣1

函数图象如图所示:

3)当x2时,yx增大而增大;或当x2时,yx减小而减小.

4)由解得

∴E(﹣2+2,﹣1),

同法可得F2+4,﹣2+

观察图象可知不等式|kx1|+b≤的解集为:22≤x≤+4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,点Bx轴的正半轴上,四边形OACB是平行四边形,点A的横纵坐标之比为34,反比例函数yk0)在第一象限内的图象经过点A,且与BC交于点F

1)若OA10,求反比例函数解析式;

2)若点FBC的中点,且△AOF的面积S12,求OA的长和点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在△ABC中,∠ACB90°DAB的中点,以DC为直径的⊙O交△ABC的边于GFE点.求证:(1)∠A=∠GEF;(2)△BDFFEC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有三张分别标有数字的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为不放回),再从中任意抽取一张,将上面的数字记为,这样的数字能使关于的一元二次方程有两个正根的概率为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=﹣x2+2x+3的图象交x轴于点AB(点A在点B的左侧).若把点B向上平移mm0)个单位长度得点B1,若点B1向左平移nn0)个单位长度,将与该二次函数图象上的点B2重合;若点B1向左平移(n+2)个单位长度,将与该二次函数图象上的点B3重合.则n的值为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】尺规作图:如图,AD为⊙O的直径。

(1)求作:⊙O的内接正六边形ABCDEF.(要求:不写作法,保留作图痕迹)

(2)已知连接DF,⊙O的半径为4,求DF的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.

1)求之间的函数关系式,并写出自变量的取值范围;

2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果

下面有三个推断:

①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乐至县城有两座远近闻名的南北古塔,清朝道光11年至13年(公元1831--1833年)修建,南塔名为文运塔,高30米;北塔名为凌云塔”.为了测量北塔的高度AB,身高为1.65米的小明在C处用测角仪CD,(如图所示)测得塔顶A的仰角为45°,此时小明在太阳光线下的影长为1.1米,测角仪的影长为1.随后,他再向北塔方向前进14米到达H处,又测得北塔的顶端A的仰角为60°,求北塔AB的高度.(参考数据≈1.414,≈1.732,结果保留整数)

查看答案和解析>>

同步练习册答案