6£®Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Rt¡÷OABºÍRt¡÷OCDµÄÖ±½Ç¶¥µãA£¬CʼÖÕÔÚxÖáµÄÕý°ëÖáÉÏ£¬B£¬DÔÚµÚÒ»ÏóÏÞÄÚ£¬µãBÔÚÖ±ÏßODÉÏ·½£¬OC=CD£¬OD=2£¬MΪODµÄÖе㣬ABÓëODÏཻÓÚE£¬µ±µãBλÖñ仯ʱ£¬Rt¡÷OABµÄÃæ»ýºãΪ$\frac{1}{2}$£®
£¨1£©ÇóµãDµÄ×ø±ê£»
£¨2£©ÉèµãBºá×ø±êΪt£¬Çë°ÑBD³¤±íʾ³É¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£¬²¢»¯¼ò£»
£¨3£©ÉèCMÓëABÏཻÓÚF£¬µ±¡÷BDEΪֱ½ÇÈý½ÇÐÎʱ£¬ÅжÏËıßÐÎBDCFµÄÐÎ×´£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʵóöCD=OC=$\sqrt{2}$£¬µÃ³öµãDµÄ×ø±ê£»
£¨2£©¸ù¾ÝÖ±½ÇÈý½ÇÐεÄÃæ»ý¹«Ê½½øÐнâ´ð£»
£¨3£©·Ö¡ÏEBD=90¡ãʱºÍ¡ÏEBD=45¡ãÁ½ÖÖÇé¿ö½øÐзÖÎö£¬ÀûÓÃÖ±½ÇÌÝÐκÍÁâÐεÄÅж¨½â´ð£®

½â´ð ½â£º£¨1£©¡ßRT¡÷OCDÖУ¬OC=CD£¬OD=2£¬
¡àCD=OC=$\sqrt{2}$£¬
¡àµãDµÄ×ø±ê£¨$\sqrt{2}$£¬$\sqrt{2}$£©£»
£¨2£©ÓÉRT¡÷OABµÄÃæ»ýΪ$\frac{1}{2}$£¬µÃB£¨t£¬$\frac{1}{t}$£©£¬
¡ßBD2=AC2+£¨AB-CD£©2£¬
¡à$B{D}^{2}=£¨t-\sqrt{2}£©^{2}+£¨\frac{1}{t}-\sqrt{2}£©^{2}$
=${t}^{2}+\frac{1}{{t}^{2}}-2\sqrt{2}£¨t+\frac{1}{t}£©+4$
=$£¨t+\frac{1}{t}£©^{2}-2\sqrt{2}£¨t+\frac{1}{t}£©+2$
=$£¨t+\frac{1}{t}-\sqrt{2}£©^{2}$£¬
¡à$BD=|t+\frac{1}{t}-\sqrt{2}|=t+\frac{1}{t}-\sqrt{2}$£»
£¨3£©Èç¹û¡÷BDEΪֱ½ÇÈý½ÇÐΣ¬ÒòΪ¡ÏBED=45¡ã£¬
¢Ùµ±¡ÏEBD=90¡ãʱ£¬´ËʱF¡¢E¡¢MÈýµãÖØºÏ£¬Èçͼ1Ëùʾ£¬

ÒòΪBF¡ÍxÖᣬDC¡ÍxÖᣬËùÒÔBF¡ÎDC£¬ËùÒÔ´ËʱËıßÐÎBDCFΪֱ½ÇÌÝÐΣ¬
¢Úµ±¡ÏEBD=45¡ãʱ£¬Èçͼ2Ëùʾ£¬

ÒòΪCF¡ÍOD£¬ËùÒÔBD¡ÎCF£¬ÓÖBF¡ÍxÖᣬDC¡ÍxÖᣬËùÒÔBF¡ÎDC£¬ËùÒÔ´ËʱËıßÐÎBDCFÊÇÆ½ÐÐËıßÐΣ¬Á¬½áOB£¬ÔÚ¡÷BODÖУ¬OB2=OD2+BD2£¬
${t}^{2}+\frac{1}{{t}^{2}}=4+£¨t+\frac{1}{t}-\sqrt{2}£©^{2}$£¬µÃ$t+\frac{1}{t}=2\sqrt{2}$£¬$DB=t+\frac{1}{t}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$£¬
´ËʱBD=CD=$\sqrt{2}$£¬ËùÒÔ´ËʱËıßÐÎBDCFΪÁâÐΣ®

µãÆÀ ´ËÌ⿼²éÒ»´Îº¯ÊýµÄ×ÛºÏÌ⣬¹Ø¼üÊǸù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʵóöCD=OC=$\sqrt{2}$£¬ÇÒ×¢Òâ·Ö¡ÏEBD=90¡ãʱºÍ¡ÏEBD=45¡ãÁ½ÖÖÇé¿ö½øÐзÖÎö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆË㣺
£¨1£©$\sqrt{2\frac{1}{2}}$¡Â3$\sqrt{28}$¡Á£¨-5$\sqrt{2\frac{2}{7}}$£©
£¨2£©5x$\sqrt{xy}$¡Â3$\sqrt{\frac{y}{x}}$¡Á$\frac{1}{3}$$\sqrt{\frac{x}{y}}$
£¨3£©$\frac{2}{b}$$\sqrt{ab}$5•£¨-$\frac{3}{2}$$\sqrt{{a}^{3}b}$£©¡Â3$\sqrt{\frac{b}{a}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¾­¹ýÅä·½£¬·½³Ìx2-6x+7=0¿ÉÒÔ±äÐÎΪ£¨¡¡¡¡£©
A£®£¨x-3£©2=16B£®£¨x+3£©2=2C£®£¨x-6£©2=29D£®£¨x-3£©2=2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®$\frac{1}{3}$µÄÏà·´ÊýÊÇ-$\frac{1}{3}$£¬-3$\frac{1}{4}$ÊÇ3$\frac{1}{4}$µÄÏà·´Êý£¬0µÄÏà·´ÊýÊÇ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©Èçͼ1£¬¡÷ABCÖУ¬DÊÇBC±ßÉÏÒ»µã£¬ÇÒCD=2BD£¬Á¬½ÓAD£¬¹ýADÉÏÒ»µãP×÷MN¡ÎBC½»AB¡¢ACÓÚM¡¢NÁ½µã£¬ÇóÖ¤£ºPN=2PM£»
£¨2£©Èçͼ2£¬¡÷ABCÖУ¬D¡¢EÊÇBC±ßµÄÈýµÈ·Öµã£¬¹ýAEÉÏÒ»µãP×÷ABµÄƽÐÐÏß½»ACÓÚµãM£¬½»ADµÄÑÓ³¤ÏßÓÚµãN£¬ÅжÏPNÓëPMÖ®¼äµÄÊýÁ¿¹ØÏµ²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©Èçͼ3£¬¡÷ABCÖУ¬D¡¢EÔÚBCÉÏ£¬ÇÒBD=CE£¬¹ýAEÉÏÒ»µãP×÷ABµÄƽÐÐÏß½»ACÓÚµãM£¬½»ADµÄÑÓ³¤ÏßÓÚµãN£¬ÈôPN=5PM£¬ÇëÖ±½Óд³ö£º$\frac{DE}{BC}$=$\frac{7-2\sqrt{6}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬ÒÑÖªÁâÐÎABCDÖУ¬¶Ô½ÇÏßAC=12£¬BD=16£¬µãE¡¢F·Ö±ðΪ±ßBC¡¢CDµÄÖе㣬µãP¶Ô½ÇÏßBDÉÏÒ»¶¯µã£¬ÔòPE+PFµÄ×îСֵΪ£¨¡¡¡¡£©
A£®10B£®12C£®14D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ñ§Ð£ÎªÁËÁ˽âѧÉúµÄÉí¸ßÇé¿ö£¬Ëæ»ú³é²éÁË50ÃûѧÉúµ÷²éËûÃǵÄÉí¸ß£¬Êý¾Ý¾­ÕûÀíÖÆ³É²»ÍêÕûÉí¸ßƵÊý·Ö²¼±í£º
Éí¸ß£¨x/cm£© ÈËÊý£¨ÆµÊý£© 
 145¡Üx£¼15510 
 155¡Üx£¼165 25
 165¡Üx£¼175 a
 175¡Üx£¼185 2
¸ù¾ÝÒÔÉÏÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©a=13£»
£¨2£©Éí¸ß·¶Î§ÔÚ145¡Üx£¼155ËùÕ¼µÄ°Ù·Ö±ÈΪ20%£¬ÔÚ155¡Üx£¼165·¶Î§ÄÚµÄÈËÊý×î¶à£»
£¨3£©ÇóÕâЩѧÉúÉí¸ßµÄƽ¾ùÖµ£»
£¨4£©Èô¸ÃУÓÐ800ÃûѧÉú£¬ÇóÉí¸ßÖÁÉÙÔÚ165cmÒÔÉϵÄѧÉúÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÈçͼËùʾ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏA=30¡ã£¬½«¡÷ABCÈÆµãC°´ÄæÊ±ÕëÐýת¦Á£¨0¡ã£¼¦Á£¼90¡ã£©µÃ¡÷DEC£®ÉèCD½»ABÓÚµãF£¬µ±¡ÏACD=40¡ã»ò20¡ãʱ£¬¡÷ADFΪµÈÑüÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ð¡ÕÅÖÀһöӲ±Ò£¬½á¹ûÊÇÒ»Á¬4´ÎÖÀ³öÕýÃæ³¯ÉÏ£¬ÄÇôËûµÚ5´ÎÖÀÓ²±Òʱ£¬³öÏÖÕýÃæÏòÉϵĸÅÂÊÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸