精英家教网 > 初中数学 > 题目详情
5.如图,两块直角三角板的直顶角O重合在一起,若∠BOC=$\frac{1}{5}$∠AOD,则∠BOC的度数为(  )
A.30°B.45°C.54°D.60°

分析 此题“两块直角三角板”可知∠DOC=∠BOA=90°,根据同角的余角相等可以证明∠DOB=∠AOC,由题意设∠BOC=x°,则∠AOD=5x°,结合图形列方程即可求解.

解答 解:由两块直角三角板的直顶角O重合在一起可知:∠DOC=∠BOA=90°
∴∠DOB+∠BOC=90°,∠AOC+∠BOC=90°,
∴∠DOB=∠AOC,
设∠BOC=x°,则∠AOD=5x°,
∴∠DOB+∠AOC=∠AOD-∠BOC=4x°,
∴∠DOB=2x°,
∴∠DOB+∠BOC=3x°=90°
解得:x=30
故选A.

点评 此题主要考察有关角的推理和运算,理清图中的角的和差关系,并结合方程求解是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.计算:$\sqrt{9}-\root{3}{-8}+4\sqrt{\frac{1}{4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,DE∥BC,若S△ADE:S△ABC=4:25,AD=4,则BD的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.我国南宋数学家杨辉所著的《详解九章算术》一书中用如图解释了二项和的乘方规律,这个图给出了(a+b)n(其中n=1,2,3,4,…)的展开式的系数规律,请根据这个规律写出(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
(a+b)=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,一只猫头鹰蹲在树AC上的B处,通过墙顶F发现一只老鼠在E处,刚想起飞捕捉时,老鼠突然跑到矮墙DF的阴影下,猫头鹰立即从B处向上飞至树上C处时,恰巧可以通过墙顶F看到老鼠躲在M处(A、D、M、E四点在同一条直线上).
已知,猫头鹰从B点观测E点的俯角为37°,从C点观察M点的俯角为53°,且DF=3米,AB=6米.求猫头鹰从B处飞高了多少米时,又发现了这只老鼠?(结果精确到0.01米)(参考数据:sin37°=cos53°=0.602,cos37°=sin53°=0.799,tan37°=cot53°=0.754,cot37°=tan53°=1.327).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AB、BC、CD分别与⊙O切于A、E、D,CD∥AB,连接CO、BO;
(1)求∠BOC的度数;
(2)若CO=3$\sqrt{5}$,BO=6$\sqrt{5}$,求⊙O的半径;
(3)在(2)的条件下,P为AD左侧圆上一点,PM∥CO交CD于M,PN∥BO交AB于N,当BN=2CM时,求线段DM的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)
(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.有理数a,b在数轴上的位置如图所示,则下列各式成立的是(  )
A.a>-bB.-b>0C.b-a>0D.-ab<0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=$\frac{1}{2}$x2+x+c与x轴交于A,B的两点,与y轴交于点C,顶点为P,其中点A的坐标是(1,0).
(1)分别求出抛物线的对称轴和点B、C、P的坐标;
(2)画出这条抛物线;
(3)利用图象求一元二次方程$\frac{1}{2}$x2+x+c=6的解.

查看答案和解析>>

同步练习册答案