【题目】如图,已知中,,将斜边BC绕点B顺时针方向旋转至BD,使,,过点D作,于点E.
(1)求证;
(2)若,,求在上述旋转过程中,线段BC扫过的面积.
【答案】(1)详见解析;(2) 6π
【解析】
(1)由旋转的性质可得BC=BD,由AD//BC可得∠ACB=∠CBD,再结合直角三角形即可完成证明;
(2)由可得AC=BE=3,再根据30角所对的直角边等于斜边的一半得出BD=2BE=6,根据平行线的性质求出∠DBC=60°,再代入扇形面积公式求解即可求解.
(1)证明:∵将斜边BC绕点B顺时针方向旋转至BD
∴∠A=∠BED=90°
又∵AD//BC
∴∠ACB=∠CBD
在中
∠A=∠BED=90°,∠ACB=∠CBD,BC=BD
∴(AAS)
(2)∵
∴AC=BE=3,
∴BD=2BE=6
又∵∠DBC=90°-30°=60°
∴线段BC扫过的面积为:=6π
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:与直线x=-2交于点P.
(1)当抛物线F经过点C时,求它的表达式;
(2)设点P的纵坐标为,求的最小值,此时抛物线F上有两点,,且≤-2,比较与的大小;
(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装公司的某种运动服每月的销量与售价的关系信息如表:
售价x(元/件) | 100 | 110 | 120 | 130 | … |
月销量y(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销量该运动服每件的利润是 元;
②月销量是y= ;(直接写出结果)
(2)设销售该运动服的月利润为w元,那么售价为多少时,当月的利润最大,最大利润时多少?
(3)该公司决定每销售一件运动服,就捐赠a(a>0)元利润给希望工程,物价部门规定该运动服售价不得超过120元,设销售该运动服的月利润为w元,若月销售最大利润是8800元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
定义:与圆的所有切线和割线都有公共点的几何图形叫做这个圆的关联图形.
问题:⊙O的半径为1,画一个⊙O的关联图形.
在解决这个问题时,小明以O为原点建立平面直角坐标系xOy进行探究,他发现能画出很多⊙O的关联图形,例如:⊙O本身和图1中的△ABC(它们都是封闭的图形),以及图2中以O为圆心的(它是非封闭的形),它们都是⊙O的关联图形.而图2中以P,Q为端点的一条曲线就不是⊙O的关联图形.
参考小明的发现,解决问题:
(1)在下列几何图形中,①⊙O的外切正多边形;②⊙O的内接正多边形;③⊙O的一个半径大于1的同心圆;⊙O的关联图形是______(填序号).
(2)若图形G是⊙O的关联图形,并且它是封闭的,则图形G的周长的最小值是____.
(3)在图2中,当⊙O的关联图形的弧长最小时,经过D,E两点的直线为y=____.
(4)请你在备用图中画出一个⊙O的关联图形,所画图形的长度l小于(2)中图形G的周长的最小值,并写出l的值(直接画出图形,不写作法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月23日是中国人民解放军海军成立70周年纪念日,届时将在青岛举行盛大的多国海军庆祝活动.为此我国海军进行了多次军事演习.如图,在某次军事演习时,舰艇A发现在他北偏东22°方向上有不明敌舰在指挥中心O附近徘徊,快速报告给指挥中心,此时在舰艇A正西方向50海里处的舰艇B接到返回指挥中心的行动指令,舰艇B迅速赶往在他北偏东60°方向的指挥中心处,舰艇B的速度是80海里/小时,请根据以上信息,求舰艇B到达指挥中心O的时间.(结果精确到0.1小时,参考数据:(sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,=1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com