精英家教网 > 初中数学 > 题目详情

【题目】阅读下列两材料,并解决相关的问题.

(材料一)按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为,依此类推,排在第位的数称为第项,记为.一般地,若果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母表示,如数列为等比数列,其中,公比.

(材料二)为了求的值.可令

, 因此,所以,

(1)等比数列的公比为_________,第6项是________

(2)如果一个数列是等比数列,且公比为,那么根据定义可得到,由此可得(用的代数式表示)

(3)若某等比数列的公比,第2项,则它的第1项,第4项,并求出的值.

【答案】(1)2,96;(2)(3)1,125;(3)

【解析】

(1)由第二项除以第一项求出公比q的值,确定出第6项即可;

(2)根据题中的定义归纳总结得到通项公式即可;

(3)由公比q与第二项的值求出第一项的值,进而确定出第4项的值,并计算出a1+a2+a3++a100即可.

解:(1)公比为___2______,第6项是__96______

(2)由此可得(用的代数式表示)

(3)由题意得

,则

所以,即,故

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形内任取一点 ,连接在⊿外分别以为边作正方形.

.按题意,在图中补全符合条件的图形;

.连接,求证:⊿≌⊿

.在补全的图形中,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①AOB=COD=90°,OM平分∠AOC,ON平分∠BOD.

(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;

(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;

(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)

进价(元/件)

20

30

售价(元/件)

29

40

(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?

(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3台

4台

1200元

第二周

5台

6台

1900元

(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,FAD的中点,作,垂足E在线段上,连接EFCF,则下列结论中一定成立的是______ 把所有正确结论的序号都填在横线上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?

(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?

(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=CBABC=90°FAB延长线上一点,点EBC上,且AE=CF

1)求证:ABE≌△CBF

2)若CAE=30°,求ACF的度数.

查看答案和解析>>

同步练习册答案