精英家教网 > 初中数学 > 题目详情
1.A、B、C三个微型机器人围绕一个圆形轨道高速运动,它们顺时针同时同地出发后,A在2秒钟时追上B,2.5秒钟时追上C,当C追上B时,C和B的运动路程的比是3:2,问第1分钟时,A围绕这个圆形轨道运动了多少圈?

分析 可设三个机器人的速度分别为VA、VB、VC,轨道周长为L.则得①:2VA=2VB+L,②:2.5VA=2.5VC+L,③:因为C追上B时,两个所用时间一样,所以路程比等于速度比,即VC:VB=3:2,联立解三式得:2.5VA=1.75L,可由此推出60VA=42L,也就是说60秒时,A机器人运动了42圈.

解答 解:设三个机器人的速度分别为VA、VB、VC,轨道周长为L.依题意有
$\left\{\begin{array}{l}{2{V}_{A}=2{V}_{B}+L}\\{2.5{V}_{A}=2.5{V}_{C}+L}\\{{V}_{C}:{V}_{B}=3:2}\end{array}\right.$,
可得:2.5VA=1.75L,
则60VA=42L.
故第1分钟时,A围绕这个圆形轨道运动了42圈.

点评 考查了应用类问题,本题关键是根据题意得到等量关系:①:2VA=2VB+L;②:2.5VA=2.5VC+L;③VC:VB=3:2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在直角坐标系中,O是坐标原点,已知△OAB的顶点A(-6,0),B(0,2),将△OAB绕点O按顺时针旋转90°,得到△ODC.
(1)求经过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;
(2)求证:点D在△ABE的外接圆上;
(3)试探究坐标轴上是否存在点P,使得以A、B、P为顶点的三角形与△ADE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先阅读下列材料,然后回答问题.
   材料:从3张不同的卡片中选取2张,有3张不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为${C}_{3}^{2}$=$\frac{3×2}{2×1}$=3.
   一般地,从n个不同的元素中选取m个元素的组合数记作${C}_{n}^{m}$,${C}_{n}^{m}$=$\frac{n(n-1)…(n-m+1)}{m(m-1)…2×1}$(m≤n)
  如:从6个不同元素中选3个元素的组合数为:${C}_{6}^{3}$=$\frac{6×5×4}{3×2×1}$=20.
(1)计算:${C}_{4}^{2}$=6,${C}_{4}^{3}$=4,${C}_{5}^{3}$=10,${C}_{5}^{4}$=5,${C}_{5}^{5}$=1,${C}_{6}^{5}$=6.
(2)由上述计算,探索猜想${C}_{n}^{k}$、${C}_{n+1}^{k+1}$、${C}_{n}^{k+1}$之间有什么关系?(直接写出结果)
(3)由(2)的结论,请你计算:${C}_{3}^{3}$+${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{3}^{2}$+…+${C}_{20}^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.
(1)若b=5,则点A坐标是(0,10);
(2)在(1)的条件下,若OQ=8,求线段BQ的长;
(3)若点P在函数y=x2(x>0)的图象上,△BQP是等腰三角形且PQ=$\sqrt{10}$,求出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知△ABC,按下列语句要求用尺规作图(保留作图痕迹,不写作法);
(1)作出BC的垂直平分线DE,垂足为D,交AC于点E;
(2)作出∠ACB的角平分线CF,交AB于点F;
(3)在BC上找出一点P,使△PEF的周长最小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,△ABC中,∠ABC、∠ACB的平分线相交于点D,过D作直线平行于BC,交AB、AC于E、F,若BE+CF=7.则EF=(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列式子,符合代数式书写格式的是(  )
A.a+b人B.1$\frac{1}{3}$aC.a×8D.$\frac{b}{a}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某餐厅中1张餐桌可坐6人,有以下两种摆放方式:

(1)对于方式一,4张桌子拼在一起可坐多少人?n张桌子呢?对于方式二呢?
(2)该餐厅有40张这样的长方形桌子,按方式一每5张拼成一张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?按方式二呢?
(3)在(2)中,若改成每8张拼成一张大桌子,则两种方式分别可坐多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知$\sqrt{x+23}$=5,(y-1)3=-0.125,求$\sqrt{x}$-$\sqrt{2xy}$-$\root{3}{2y-x}$的值.

查看答案和解析>>

同步练习册答案