12£®ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºó»Ø´ðÎÊÌ⣮
   ²ÄÁÏ£º´Ó3ÕŲ»Í¬µÄ¿¨Æ¬ÖÐѡȡ2ÕÅ£¬ÓÐ3ÕŲ»Í¬µÄÑ¡·¨£¬³éÏó³ÉÊýѧÎÊÌâ¾ÍÊÇ´Ó3¸öÔªËØÖÐѡȡ2¸öÔªËØµÄ×éºÏ£¬×éºÏÊý¼ÇΪ${C}_{3}^{2}$=$\frac{3¡Á2}{2¡Á1}$=3£®
   Ò»°ãµØ£¬´Ón¸ö²»Í¬µÄÔªËØÖÐѡȡm¸öÔªËØµÄ×éºÏÊý¼Ç×÷${C}_{n}^{m}$£¬${C}_{n}^{m}$=$\frac{n£¨n-1£©¡­£¨n-m+1£©}{m£¨m-1£©¡­2¡Á1}$£¨m¡Ün£©
  È磺´Ó6¸ö²»Í¬ÔªËØÖÐÑ¡3¸öÔªËØµÄ×éºÏÊýΪ£º${C}_{6}^{3}$=$\frac{6¡Á5¡Á4}{3¡Á2¡Á1}$=20£®
£¨1£©¼ÆË㣺${C}_{4}^{2}$=6£¬${C}_{4}^{3}$=4£¬${C}_{5}^{3}$=10£¬${C}_{5}^{4}$=5£¬${C}_{5}^{5}$=1£¬${C}_{6}^{5}$=6£®
£¨2£©ÓÉÉÏÊö¼ÆË㣬̽Ë÷²ÂÏë${C}_{n}^{k}$¡¢${C}_{n+1}^{k+1}$¡¢${C}_{n}^{k+1}$Ö®¼äÓÐʲô¹ØÏµ£¿£¨Ö±½Óд³ö½á¹û£©
£¨3£©ÓÉ£¨2£©µÄ½áÂÛ£¬ÇëÄã¼ÆË㣺${C}_{3}^{3}$+${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{3}^{2}$+¡­+${C}_{20}^{2}$£®

·ÖÎö £¨1£©¸ù¾Ýж¨Òå·Ö±ð½øÐмÆË㣻
£¨2£©ÀûÓã¨1£©ÖеļÆËã½á¹ûµÃ${C}_{4}^{2}$+${C}_{4}^{3}$=${C}_{5}^{3}$£¬${C}_{5}^{4}$+${C}_{5}^{5}$=${C}_{6}^{5}$£¬Óɴ˹æÂɿɵÃ${C}_{n}^{k}$+${C}_{n}^{k+1}$=${C}_{n+1}^{k+1}$£»
£¨3£©ÀûÓã¨2£©ÖеĹæÂÉ´Ó×óµ½ÓÒÒÀ´Î¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©${C}_{4}^{2}$=$\frac{4¡Á3}{2¡Á1}$=6£¬${C}_{4}^{3}$=$\frac{4¡Á3¡Á2}{3¡Á2¡Á1}$=4£¬${C}_{5}^{3}$=$\frac{5¡Á4¡Á3}{3¡Á2¡Á1}$=10£¬${C}_{5}^{4}$=$\frac{5¡Á4¡Á3¡Á2}{4¡Á3¡Á2¡Á1}$=5£¬${C}_{5}^{5}$=$\frac{5¡Á4¡Á3¡Á2¡Á1}{5¡Á4¡Á3¡Á2¡Á1}$=1£¬${C}_{6}^{5}$=$\frac{6¡Á5¡Á4¡Á3¡Á2}{5¡Á4¡Á3¡Á2¡Á1}$=6£®
¹Ê´ð°¸Îª6£¬4£¬10£¬5£¬1£¬6£»
£¨2£©${C}_{n}^{k}$+${C}_{n}^{k+1}$=${C}_{n+1}^{k+1}$£»
£¨3£©${C}_{3}^{3}$+${C}_{3}^{2}$+${C}_{4}^{2}$+C52+¡­+${C}_{20}^{2}$=C43+${C}_{4}^{2}$+C52+¡­+${C}_{20}^{2}$
=C53+C52+¡­+${C}_{20}^{2}$
=C63+¡­+${C}_{20}^{2}$
=C213£®

µãÆÀ ±¾Ì⿼²éÁ˹æÂÉÐÍ-Êý×ֵı仯ÀࣺÈÏÕæ¹Û²ì¡¢×Ðϸ˼¿¼£¬ÉÆÓÃÁªÏëÊǽâ¾öÕâÀàÎÊÌâµÄ·½·¨£®±¾ÌâµÄ¹Ø¼üÊǶÔж¨ÒåµÄÀí½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª£ºÈçͼ£¬Rt¡÷ABC¡ÕRt¡÷CDA£¬ÆäÖеãA£¬DµÄ¶ÔÓ¦µã·Ö±ðÊÇC£¬B£¬¡ÏB=¡ÏD=Rt¡Ï£®ÇóÖ¤£ºËıßÐÎABCDÊǾØÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó½»xÖáÓÚA£¨-1£¬0£©£¬B£¨2£¬0£©£¬½»yÖáÓÚC£¨0£¬-2£©£¬¹ýA£¬C»­Ö±Ïߣ®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôµãPÊÇÅ×ÎïÏßÉϵ͝µã£¬µãQÊÇÖ±Ïßy=xÉϵ͝µã£¬ÇëÅжÏÊÇ·ñ´æÔÚÒÔP¡¢Q¡¢O¡¢CΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚyÖáÓÒ²àµÄµãMÔÚ¶þ´Îº¯ÊýͼÏóÉÏ£¬ÒÔMΪԲÐĵÄÔ²ÓëÖ±ÏßACÏàÇУ¬ÇеãΪH£®ÇÒ¡÷CHM¡×¡÷AOC£¨µãCÓëµãA¶ÔÓ¦£©£¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬D¡¢E·Ö±ðÊÇ¡÷ABCµÄ±ßAC¡¢ABÉϵĵ㣬AD=6£¬AB=10£¬BC=12£¬ÇÒ$\frac{AE}{AC}=\frac{3}{5}$£¬
£¨1£©ÇóÖ¤£º¡÷ADE¡×¡÷ABC£»   
£¨2£©ÇóDEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®½â·Öʽ·½³Ì£º
£¨1£©$\frac{80}{x}$=$\frac{70}{x-5}$                      
£¨2£©$\frac{a-3}{{a}^{2}-6a+9}$=$\frac{1}{a-3}$
£¨3£©$\frac{x}{x-2}$+$\frac{1}{2-x}$=2
£¨4£©$\frac{2}{3x-1}$=1+$\frac{3}{6x-2}$                   
£¨5£©$\frac{6}{{x}^{2}-1}$-$\frac{1}{x+1}$=$\frac{3}{x-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÈçͼËùʾ£¬Ôòabc£¬b2-4ac£¬2a+b£¬a+b+cÕâËĸöʽ×ÓÖУ¬ÖµÎªÕýÊýµÄÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ê±ÖÓÕý³£ÔËתʱ£¬·ÖÕëÿ·ÖÖÓת¶¯6¡ã£¬Ê±Õëÿ·ÖÖÓת¶¯0.5¡ã£¬ÔÚÔËת¹ý³ÌÖУ¬Ê±ÕëÓë·ÖÕëµÄ¼Ð½ÇΪy£¨¶È£©£¬ÔËתµÄʱ¼äΪt£¨min£©£¬µ±Ê±¼ä´Ó12£º00¿ªÊ¼µ½12£º30Ö¹£¬yÓëtÖ®¼äµÄº¯ÊýͼÏóÊÇÏÂÁе썡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®A¡¢B¡¢CÈý¸ö΢ÐÍ»úÆ÷ÈËÎ§ÈÆÒ»¸öÔ²ÐιìµÀ¸ßËÙÔ˶¯£¬ËüÃÇ˳ʱÕëͬʱͬµØ³ö·¢ºó£¬AÔÚ2ÃëÖÓʱ׷ÉÏB£¬2.5ÃëÖÓʱ׷ÉÏC£¬µ±C×·ÉÏBʱ£¬CºÍBµÄÔ˶¯Â·³ÌµÄ±ÈÊÇ3£º2£¬ÎʵÚ1·ÖÖÓʱ£¬AÎ§ÈÆÕâ¸öÔ²ÐιìµÀÔ˶¯Á˶àÉÙȦ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªPµãÊǵȱߡ÷ABCÁ½±ß´¹Ö±Æ½·ÖÏߵĽ»µã£¬µÈ±ß¡÷ABCµÄÃæ»ýΪ15£¬Ôò¡÷ABPµÄÃæ»ýΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸