【题目】如图,在⊙O中,半径OA⊥OB,过OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.则图中阴影部分的面积为______________.
【答案】
【解析】分析:(1)首先证明OA⊥DF,由垂径定理求出CD=,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理求得OD的长,再根据S阴=S△CDO+S扇形OBD-S扇形OCE计算即可.
详解:连接OD,
∵OA⊥OB,
∴∠AOB=90°,
∵CD∥OB,
∴∠OCD=90°,
∴OA⊥DF,
∴CD=DF=,
在Rt△OCD中,∵C是AO中点,
∴OA=OD=2CO,
设OC=x,
则x2+()2=(2x)2,
解得:x=1,
∴OA=OD=2,
∵OC=OD,∠OCD=90°,
∴∠CDO=30°,
∵FD∥OB,
∴∠DOB=∠ODC=30°,
∴S阴=S△CDO+S扇形OBDS扇形OCE=×1×+=.
科目:初中数学 来源: 题型:
【题目】已知一个数轴上有A,B,C三点,它们所表示的数分别为2,﹣3,x.
(1)若点C是线段AB的中点,请直接写出x的值;
(2)若OC=OB﹣OA,求出x的值;
(3)若2AC+OB=7,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).
(1)求此二次函数的表达式;
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标;
(3)如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长( )
A. 随C、D的运动位置而变化,且最大值为4 B. 随C、D的运动位置而变化,且最小值为2
C. 随C、D的运动位置长度保持不变,等于2 D. 随C、D的运动位置而变化,没有最值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自2016年国庆后,许多高校均投放了使用手机就可随时用的共享单车。某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费。具体收费标准如下:
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
(1)写出a、b的值。
(2)已知该校有5100名师生,且A品牌共享单车投放该校一天的费用为5800元。试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点和直线( 不同时为0),则点到直线的距离可用公式 计算.
例如.求点 到直线的距离.
解:由直线可知
∴
根据以上材料,解答下列问题:
(1) 求点 到直线的距离;
(2) 求点 到直线的距离,并说明点与直线的位置关系;
(3)已知直线 与直线平行,求两条平行线间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.
(1)求线段MN的长度;
(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;
(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离不小于20,那么n的最小值是( )
A. 12B. 13C. 14D. 15
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com