【题目】如图,已知直角坐标平面上的ΔABC,AC=CB,∠ACB=90°,且A(-1,0),B(m,n),C(3,0).若抛物线经过A、C两点.
(1)求a、b的值;
(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点B,求新抛物线的解析式.
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E是AD边上一点,连接CE,交对角线BD于点F,过点A作AB的垂线交BD的延长线于点G,过B作BH垂直于CE,垂足为点H,交CD于点P,2∠1+∠2=90°.
(1)若PH=2,BH=4,求PC的长;
(2)若BC=FC,求证:GF=PC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于( )
A.B.C.4D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=4cm,∠CAB=60°,P是弧上的一个动点,连接AP,过C点作CD⊥AP于D,连接BD,在点P移动的过程中,BD的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2﹣4x﹣6.
(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;
(2)在所给的平面直角坐标系中,画出这个二次函数的图象;
(3)当﹣2<x<3时,观察图象直接写出函数y的取值范围;
(4)若直线y=k与抛物线没有交点,直接写出k的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com