【题目】如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,OA=6.
(1)求∠C的大小;
(2)求阴影部分的面积。
【答案】(1)∠C =30°;(2)
【解析】
(1)根据垂径定理可得,然后可得∠C=∠AOD,然后在Rt△COE中可求出∠C的度数;
(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OADBS△OAB,即可得出答案.
解:(1)∵CD是圆O的直径,CD⊥AB,
∴,
∴∠C=∠AOD,
∵∠AOD=∠COE,
∴∠C=∠COE,
∵AO⊥BC,
∴∠C=30°;
(2)连接OB,
由(1)知,∠C=30°,
∴∠AOD=∠BOD=60°,
∴∠AOB=120°,
在Rt△AOF中,OA=6,∠AOF=60°,
∴OF=3,AF=,
∴AB=2AF=,
∴S阴影=S扇形OADBS△OAB=.
科目:初中数学 来源: 题型:
【题目】如图,已知直角坐标平面上的ΔABC,AC=CB,∠ACB=90°,且A(-1,0),B(m,n),C(3,0).若抛物线经过A、C两点.
(1)求a、b的值;
(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点B,求新抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是等边三角形,D 为 CB 延长线上一点,E 为 BC 延长线上点.
(1)当 BD、BC 和 CE 满足什么条件时,△ADB∽△EAC?
(2)当△ADB∽△EAC 时,求∠DAE 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为4的⊙O中,CD为直径,AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式及顶点坐标;
(2)若抛物线上有一点B,且S△OAB=1,求点B的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知抛物线y=ax2+bx(a≠0)经过A(3,0),B(4,4)两点.
(1)求抛物线解析式.
(2)将直线OB向下平移m个单位后,得到的直线与抛物线只有一个公共点D,求m值及交点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=24,点D在边BC上, CD=10,BD=26.点P是线段AD上一动点,当半径为12的⊙P与△ABC的一边相切时,AP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将面积为的矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=BC, DH=AD,连接EF, FG,GH,HE,AF,CH.若四边形EFGH为菱形,,则菱形EFGH的面积是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商销售每箱进价为元的苹果,物价部门规定每箱售价不得高于元,市场调查发现,若每箱以元的价格销售,平均每天销售箱,价格每提高元,平均每天少销售箱.
求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com