精英家教网 > 初中数学 > 题目详情
12.若$\root{a+b}{4b}$与$\sqrt{3a+b}$能合并,求a,b的值.

分析 根据同类二次根式的定义即可得出a,b的关系式,解得a,b.

解答 解:由题意得:
$\left\{\begin{array}{l}{a+b=2}\\{3a+b=4b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$.

点评 本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD?(允许添加一个条件)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为54°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.定义:底与腰的比是$\frac{\sqrt{5}-1}{2}$的等腰三角形叫做黄金等腰三角形.
如图,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1
(1)证明:AB2=AA1•AC;
(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)
(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An-1An.(n为大于1的整数,直接回答,不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,双曲线y=$\frac{k}{x}$(x>0)在第一象限内的一支,点A,P是图象上的两点,作AB⊥x轴,AC⊥y轴,PQ⊥x轴,PR⊥AB,垂足分别是B,C,Q,R,且四边形ABOC与四边形PQBR都是正方形.
(1)当k=1时,求正方形ABOC与正方形PQBR的边长;
(2)当k=2时,求正方形ABOC与正方形PQBR的边长;
(3)试求出第(1),(2)题中的正方形ABOC与正方形PQBR的边长之比,你发现其比有何特征?再请你探索一下,对于任意的k(k>0)你所发现的特征是否还成立?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.与分式$\frac{a(a-b)}{a+b}$的乘积等于$\frac{{a}^{2}+3ab}{{a}^{2}+2ab+{b}^{2}}$的分式是$\frac{a+3b}{{a}^{2}-{b}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.OA、OB为两条笔直的公路,C、D为两个工厂,现欲在附近建一个货运站,使得它到两条公路距离相等,到两家工厂距离也相等.请作出符合条件的货运站P.不写作法,保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果一个四边形的各个顶点均在三角形的边上,那么称这个四边形是三角形的内接四边形,在Rt△ABC中,∠B=90°,AB=6,BC=8,则△ABC的内接正方形的边长为$\frac{24}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在3×3的方阵图中,填写了一些数和代数式(其中每个代数式表示一个数)使得每行的3个数,每列的3个数,斜对角的3个数之和均相等.
(1)求x、y的值;
(2)将方阵中的空格部分填上正确的数.
 62x-4 
 y-x 3y-x
 40

查看答案和解析>>

同步练习册答案