【题目】小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤,下面是爸爸妈妈的对话:
妈妈:“上个月萝卜的单价是元/斤,排骨的单价比萝卜的7倍还多2元”;
爸爸:“今天,报纸上说与上个月相比,萝卜的单价上涨了25%,排骨的单价上涨了20%”
请根据上面的对话信息回答下列问题:
(1)请用含的式子填空:上个月排骨的单价是_________元/斤,这个月萝卜的单价是__________元/斤,排骨的单价是______________元/斤。
(2)列式表示今天买的萝卜和排骨比上月买同重量的萝卜和排骨一共多花多少元?(结果要求化成最简)
(3)当=4,求今天买的萝卜和排骨比上月买同重量的萝卜和排骨一共多花多少元?
【答案】(1)7a+2,125%a,8.4a+2.4;(2)(3.55a+0.8)元;(3)15元.
【解析】
(1)根据题意即可写出上个月排骨的单价、这个月萝卜的单价及排骨的单价;
(2)计算两次买的价钱,再相减即可求解;
(3)把a=4代入即可求解.
(1)∵上个月萝卜的单价是元/斤,排骨的单价比萝卜的7倍还多2元
∴上个月排骨的单价是(7a+2)元/斤;
这个月萝卜的单价是(1+25%)a=125%a元/斤;
这个月排骨的单价是(1+20%)(7a+2)=(8.4a+2.4)元/斤
故填:7a+2,125%a,8.4a+2.4;
(2)今天买的萝卜和排骨花的钱数为3×125%a+2×(8.4a+2.4);
上个月买的萝卜和排骨花的钱数为3×a+2×(7a+2)
故今天买的萝卜和排骨比上月买同重量的萝卜和排骨一共多花的钱数为
[3×125%a+2×(8.4a+2.4)]-[ 3×a+2×(7a+2)]= 3.55a+0.8(元)
答:今天买的萝卜和排骨比上月买同重量的萝卜和排骨一共多花(3.55a+0.8)元;
(3)把=4代入3.55a+0.8=3.55×4+0.8=15(元)
答:今天买的萝卜和排骨比上月买同重量的萝卜和排骨一共多花15元.
科目:初中数学 来源: 题型:
【题目】城南中学九年级共有12个班,每班48名学生,学校对该年级学生数学学科学业水平测试成绩进行了抽样分析,请按要求回答下列问题:
【收集数据】
(1)要从九年级学生中抽取一个48人的样本,你认为以下抽样方法中最合理的是
________.①随机抽取一个班级的48名学生;②在九年级学生中随机抽取48名女学生;
③在九年级12个班中每班各随机抽取4名学生.
【整理数据】
(2)将抽取的48名学生的成绩进行分组,绘制成绩频数分布表和成绩分布扇形统计图如下.
请根据图表中数据填空:
①表中m的值为________;
② B类部分的圆心角度数为________°;
③估计C、D类学生大约一共有_________名.
九年级学生数学成绩频数分布表
成绩(单位:分) | 频数 | 频率 |
A类(80~100) | 24 | |
B类(60~79) | 12 | |
C类(40~59) | 8 | m |
D类(0~39) | 4 |
【分析数据】
(3)教育主管部们为了解学校学生成绩情况,将同层次的城南、城北两所中学的抽样数据进行对比分析,得到下表:
学校 | 平均数(分) | 方差 | A、B类的频率和 |
城南中学 | 71 | 358 | 0.75 |
城北中学 | 71 | 588 | 0.82 |
请你评价这两所学校学生数学学业水平测试的成绩,提出一个解释来支持你的观点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM.
(1)求证: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;
(1)当点在边上时,①判断与的数量关系;
②当时,判断点的位置;
(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实践与探究
如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。
(1)求直线的解析式;
(2)若点是轴上一点,且的面积是面积的,求点的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
材料1:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号.如: ;
材料2: 配方法是初中数学思想方法中的一种重要的解题方法。配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题。它的应用非常广泛,在解方程、求最值、证明等式、化简根式、因式分解等方面都经常用到。
如:
∵,∴即
∴的最小值为1.
根据以上材料解决下列问题:
(1)填空:=________________;=______________;
(2)求的最小值;
(3)已知,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知双曲线:与抛物线:y=ax2+bx+c交于A(2,3)、B(m,2)、C(﹣3,n)三点.
(1)求双曲线与抛物线的解析式;
(2)在平面直角坐标系中描出点A、点B、点C,并求出△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com